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Getting Started

This section includes the following topics:

What Is CAGE? (p. 1-2)

Navigating CAGE (p. 1-4)

How to Use This Manual (p. 1-9)

Introducing the CAGE browser
part of the Model-Based Calibration
Toolbox™ product. You can use
CAGE to calibrate lookup tables
using models and data. You can
trade off competing objectives, and
validate calibrations against data.

How to find your way around CAGE
and navigate between processes,
tables, data, variables, and models.

How to find information in this
User’s Guide, with links to reference
chapters for all CAGE functionality.
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What Is CAGE?

CAGE (CAlibration GEneration) is an easy-to-use graphical interface for
calibrating lookup tables for your electronic control unit (ECU).

As engines get more complicated, and models of engine behavior more
intricate, it is increasingly difficult to rely on intuition alone to calibrate
lookup tables. CAGE provides analytical methods for calibrating lookup
tables.

CAGE uses models of the engine control subsystems to calibrate lookup tables.
With CAGE you fill and optimize lookup tables in existing ECU software using
models from the Model Browser part of the Model-Based Calibration Toolbox™
product. From these models, CAGE builds steady-state ECU calibrations.

CAGE also compares lookup tables directly to experimental data for
validation.

Feature Calibration

A feature calibration compares a model of an estimated signal with a lookup
table (or algebraic collection of tables) that estimates the same signal in the
ECU. CAGE finds the optimum calibration for the lookup table(s).

For example, a typical engine subsystem controls the spark angle to produce
the peak torque; that is, the Maximum Brake Torque (MBT) spark. Using the
Model Browser, you can build a statistically sound model of MBT spark, over
a range of engine speeds and relative air charges, or loads. Use the feature
calibration to fill a lookup table by comparing the table to the model.

Tradeoff Calibration

A tradeoff calibration fills lookup tables by comparing models of different
engine characteristics at key operating points.

For example, there are several models of important engine characteristics,
such as torque and nitrous oxides (NOX) emissions. Both models depend on
the spark angle. At a particular operating point, a slight reduction of torque
can result in a dramatic reduction of NOX emissions. Thus, the calibrator
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uses the value of the spark angle that gives this reduction in NOX emissions
instead of the spark angle that generates maximum torque.

Optimization

CAGE can optimize calibrations with reference to models, including
single- and multi-objective optimizations, sum optimizations, user-defined
optimizations, and automated tradeoff.

Comparing Calibrations to Data

You can compare your calibrations to experimental data for validation.
For example, after completing a calibration, you can import experimental
data from a spreadsheet. You can use CAGE to compare your calibration
to the data.

Starting the CAGE Browser

To start the application, type

cage

at the MATLAB® command prompt.
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Navigating CAGE

In this section...

“How to Select CAGE Views” on page 1-4

“CAGE Views and Processes” on page 1-6

How to Select CAGE Views
The view of CAGE depends on two things:

¢ Which button you select in the Processes and Data Objects panes

¢ The item you highlight in the tree display

When you open CAGE, it looks like this.
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1 Getting Started

CAGE includes a Processes pane and a Data Objects pane to help you
identify the type of calibration you want to do and the data objects that
you intend to use. Use the buttons in these panes to navigate between the
different sections of functionality in CAGE.

CAGE Views and Processes
The Processes pane has three buttons:

® Feature shows the Feature view, with the tables and strategies that are
associated with that feature. See “Feature View” on page 4-46.

A feature is a strategy (or collection of tables) and a model used to calibrate
those tables. In the Feature view, you can fill tables by comparing a
strategy to a model. See Chapter 4, “Feature Calibrations”. You can import
existing strategies or construct new ones using Simulink® software from
the feature view.

From the feature node in the tree display, you can access the Surface Viewer
to examine the strategy or model or both. See Chapter 8, “Surface Viewer”.

® Tradeoff shows the Tradeoff view, with a list of the tables and models
to display. Here you can see graphically the effects of manually altering
variables to trade off different objectives (such as maximizing torque while
minimizing emissions). At the tradeoff node, you can calibrate table values
to achieve the best compromise between competing objectives. You can
calibrate using single or multimodel tradeoffs. See Chapter 5, “Tradeoff
Calibrations”. You can also use the optimization functionality of CAGE to
run automated tradeoffs, described in the Optimization section (see below).

¢ Optimization shows the Optimization view. From here you can set up
and run optimizations, including automated tradeoffs. There are standard
routines available and also templates provided so you can write your
own optimization routines. You can find full instructions in Chapter 6,
“Optimization”.

You can reach the Calibration Manager from the Feature and Tradeoff
process views, and from the Tables view, but not Optimization. In

the Calibration Manager you can set up the size and contents of tables
(manually or using existing calibration files) and edit the precision used for
values (to match the kind of electronic control unit you are going to use).
See “Calibration Manager” on page 3-21.
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The Data Objects pane has four buttons:

® Variable Dictionary stores all the variables, constants, and formulas in
your session. Here you can view, add, and edit any variables in any part of
your session. See “Setting Up Variable Items” on page 2-3.

¢ Tables enables you to see all the tables and normalizers in your session.
You can also calibrate tables manually here if you want. You can add and
delete tables from the project. From any table display (here, or in other
views) you can access the History Display to manage changes in your tables
and normalizers. You can use the History Display to reverse changes. See
“Setting Up Tables” on page 3-3.

® Models stores all the models in your session. Here you can view a graphical
display of these models, including a diagram of the model’s input structure.
This is useful because a model can have other models as inputs. You can
change the inputs here. For example, you can change your model’s input
Spark to be connected to a model for Spark rather than to the variable
Spark. You can also access the surface viewer here to examine models. See
“Setting Up Models” on page 2-11 and Chapter 8, “Surface Viewer”.



1 Getting Started

* Data Sets enables you to evaluate your models and features over a custom
set of input values. Here you can create and edit a set of input values
and view several models or features evaluated at these points. You can
compare your tables and models with experimental data to validate your
calibrations. You can also fill tables directly from experimental data by

loading the experimental data as a new data set. See Chapter 7, “Data
Sets”.

Data Ohjects

Tahles

Maodels

Data Sets
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How to Use This Manual

This manual is the CAGE User’s Guide. See also the Model Browser User’s
Guide for information on the other main interface of the Model-Based
Calibration Toolbox™ product.

Learning CAGE

For tutorials and case studies, see Getting Started in the Model-Based
Calibration Toolbox Getting Started Guide.

Using CAGE

¢ Chapter 2, “Variables and Models” describes how to set up CAGE sessions
before performing calibrations and gives an overview of where in CAGE to
find all the functionality for different processes.

¢ Chapter 3, “Tables” describes how to create and use tables and normalizers,
including using the Calibration Manager and History Viewer.

e Chapter 4, “Feature Calibrations” describes how to calibrate lookup tables
by reference to models built using the model browser.

¢ Chapter 5, “Tradeoff Calibrations” describes how to calibrate lookup tables
by adjusting many values to fulfill different objectives.

¢ Chapter 6, “Optimization” describes how to use the optimization functions,
including automated tradeoffs, and describes all the functions available for
user-defined optimizations.

¢ Chapter 7, “Data Sets” describes how to use CAGE to compare calibrations
to experimental data, and how to use experimental data to fill lookup tables.

e Chapter 8, “Surface Viewer” describes how to use the Surface Viewer.
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Variables and Models

The following sections describe how to set up variables and models before

performing calibrations.

Setting Up Variable Items (p. 2-3)

Setting Up Models (p. 2-11)

Model Properties (p. 2-21)

Before you can perform a calibration
using CAGE, you need to set up the
variables and constants you want
to use. This section describes how
to use the Variable Dictionary view
to create, import, edit, and export
variables and constants.

Before you can perform a calibration
using CAGE, you need to set up the
models you want to use. This section
describes how to use the Model
view to import and rename models,
edit model inputs, and create new
function models.

Use the Model Properties dialog
to switch model output between
model values and boundary or
PEV values, and view information
such as the model type, definition,
inputs, creation date, user name,
and toolbox version.
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CAGE Import Tool (p. 2-26) This section describes how to use the
CAGE Import Tool to get models and
other items from any Model-Based
Calibration Toolbox™ project file
produced in CAGE or the Model
Browser. You can use this to replace
existing items in your CAGE project.

Specifying Locations of Files (p. 2-30) How to use file preferences in CAGE.

2-2
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Setting Up Variable Items

In this section...

“Introducing the Variable Dictionary View” on page 2-3
“Importing and Exporting a Variable Dictionary” on page 2-5
“Adding and Editing Variable Items” on page 2-6

“Using the Variable Menu” on page 2-8

“Using Aliases” on page 2-9

Introducing the Variable Dictionary View

The Variable Dictionary is a store for all the variables, constants, and
formulae in your session.

To view or edit the items in the Variable Dictionary, click the button, shown,
in the Data Objects pane.

Selecting the Variable Dictionary view displays the variables, constants,
and formulae in the current project.

Note that if you have existing CAGE projects you can use the “CAGE Import

Tool” on page 2-26 to import variable items and other CAGE items directly
from other projects.

2-3
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Following is an example of the Variable Dictionary view.

List of all the constants, variables, and formulas in the project

J CAGEBrowser-Untitled | Bil=lk.{

File Edit ‘ariable Tools ‘Wihdow Help
Ded|x|#E4 e |2n@
Frocezzes Wariable D/c:tiunar_l,l
M ame II Type I Aliaz I Minimuml Ma:-cimuml Set F'Dintl Formula I
XM * Wariable  engine_speed B00 E500 2R00
XL Wariable  load, Load 01 1 n4
XA Yarable  afr, AFR N 17 14.35
k stoich  Constant 14.35
X SPE “arable 5. s, spark -10 B0 225
fixilambda  Formula 0.75 125 1 Atztoich
A
Alias: | afr. AFR
Description: I Air-fuel ratio [ratio)

hdimirnum; I 11 jl b EtirriLn: I 17 il
St Pt E=

Formula; I

[ata Objects

Edit boxes to change the settings of the
selected constant, variable, or formula
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The upper pane shows a list of all the current variables, constants, and
formulas. The lower pane displays edit boxes so you can specify the settings of
the selected variable, constant, or formula.

Different Variable Dictionary Items

® Variables — standard items that feed into models, strategies and tables,
and define ranges for these items

® Constant — used for inputs that you do not want to change

¢ Formulae — used when you want a variable item to depend on another

Importing and Exporting a Variable Dictionary

A variable dictionary contains all the variable items for your calibrations. You
can set up your variable dictionary once, and use it in many calibrations.

If you import a model, it has variables associated with it, in which case you
might not have to import a variable dictionary.

Importing a Variable Dictionary
To import a dictionary of variables from an .xml file,
1 Select File > Import > Variable Dictionary.

2 Select the correct dictionary file.

Note you can also import variable items directly from other CAGE projects
using the “CAGE Import Tool” on page 2-26.

Exporting a Variable Dictionary
After setting up a variable dictionary, you can save the dictionary for use in
many different calibrations.

To export a dictionary of variables to an .xm1 file,

1 Select File > Export > Variable Dictionary.

2 Select a suitable name for the dictionary file.
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See Also

e “Setting Up Variable Items” on page 2-3
¢ “Adding and Editing Variable Items” on page 2-6

Adding and Editing Variable ltems

To add variable items you can use the Variable Dictionary toolbar, shown, or
you can select items from the File -> New -> Variable Items menu.

Add a variable Add a variable Add a variable

Adding a Variable

To add a variable,

1 Select File > New > Variable Item > Variable.
A new variable is added to the variable dictionary.
2 Select Edit > Rename to alter the name of the variable.

3 Specify the Minimum and Maximum values of the variable in the edit
boxes in the lower pane.

4 Specify the value of the Set Point in the edit box.

Using Set Points in the Variable Dictionary. The set point of a variable is
a point that is of particular interest in the range of the variable. You can edit
set points in the variable dictionary or the models view.

For example, for the air/fuel ratio variable, AFR, the range of values is
typically 11 to 17. However, whenever only one value of AFR is required, it is
preferable to choose 14.3, the stoichiometric constant, over any other value.
So enter 14.3 as the Set Point.
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CAGE uses the set point as the default value of the variable wherever one
value from the variable range is required. For instance, CAGE uses the set
point when evaluating a model over the range of a different variable.

For example, a simple model for torque depends on AFR, engine speed, and
relative air charge. CAGE uses the set point of AFR when it calculates the
values of the model over the ranges of the engine speed and relative air charge.

Adding a Constant

To add a constant,

1 Select File > New > Variable Item > Constant.
A new constant is added to the variable dictionary.
2 Select Edit > Rename to alter the name of the constant.
3 Specify the value of the constant in the Set Point edit box, in the lower

pane.

Adding Formulas

You might want to add a formula to your session. For example, the formula

_afr
stoich

where afr is the air/fuel ratio and stoich is the stoichiometric constant.
To add a formula,

1 Select File > New > Variable Item > Formula.
The Add Formula dialog box appears.

2 In the dialog, enter the right side of the formula, as in this example
afr/stoich. Note it is normal to create inputs to a formula first. If you
do not use pre-existing variable names then those inputs are created, so
be careful to get input names exactly correct. Follow these requirements
for a valid formula string:
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A formula can only have exactly one variable input

No formulae as inputs

® Not circular (i.e. self referencing)

® Must not error when evaluated

® Must produce a vector for a vector input

® Must be invertible
Click OK and a new formula is added to the variable dictionary.

3 Select Edit -> Rename to alter the name of the formula.

See Also

e “Setting Up Variable Items” on page 2-3
¢ “Adding and Editing Variable Items” on page 2-6

Using the Variable Menu

The Variable menu in the variable dictionary enables you to alter variable
items. These choices are also available in the right-click context menu on
the list view.

Change item to:

e Alias

Changes the selected item to be an alias of another item in the current
project. For example, if you have two variables, engine_speed and n,
you can change n to be an alias of engine_speed, with its maximum and
minimum values. For more information, see the next section, “Using
Aliases” on page 2-9.

¢ Formula

Changes a variable or constant into a formula. You have to define the right
side of the formula, and you can select the check box to calculate the range.
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¢ Constant

Changes a variable or formula into a constant. The value of the constant is
the set point of the old item.

® Variable

Changes a constant or formula into a variable. The range is from 0 to twice
the constant’s value (negative values have a maximum of 0).

See Also

e “Setting Up Variable Items” on page 2-3
e “Using Aliases” on page 2-9

Using Aliases

The variable dictionary enables you to use the same set of variables, constants,
and formulas with many different models and calibrations.

Why Use Aliases?

It is possible that in one model or strategy the engine speed has been defined
as N, and in another it has been defined as rpm. The alias function enables you
to automatically link inputs with various names to a single CAGE variable
when you import models and strategies.

Creating an Alias
For example, in a variable dictionary there are two variables:

* N, with a range of 500 to 6500
® rpm, with a range of 2500 to 3500

To set rpm to be an alias of N,
1 Highlight the variable rpm.
2 Select Variable > Change item to > Alias.

3 In the dialog, choose N from the list.
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This eliminates the variable rpm from your variable dictionary, and every
model and calibration that refers to rpm now refers to N instead.

Note If N is made an alias of rpm in the preceding example, the range of N is
restricted to the range of rpm, 2500 to 3500.

You can also add aliases to existing items by entering a list of names in the
Alias edit box.

See Also

e “Setting Up Variable Items” on page 2-3
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Setting Up Models

In this section...

“Introducing the Models View” on page 2-11
“Importing Models” on page 2-14
“Adding New Function Models” on page 2-16

“Renaming and Editing Models” on page 2-18

Introducing the Models View

CAGE generally calibrates lookup tables by reference to models. The Models
view is a storage place for all the models in your session.

To view and edit the models in your session, select Models by clicking the
button shown in the Data Objects pane.

Py

hodels

The Models view displays the following:

® A list of all the models in the current project.

® The model connections. That is, which constants, variables, and models are
inputs to the selected model. You can use the View menu or the right-click
context menu on the graph to zoom in and out, zoom to fit, and reset.

* An image of the response surface of the selected model; you can select
factors to display. Use the View menu to choose between:

No Constraint Display — Shows entire model surface.

Show Constraint — Areas outside the boundary constraint model (if
any) are yellow.

Clip to Constraint — The surface is only shown within the boundary
constraint model.

2-11
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View > Edit Input Set Points opens a dialog box where you can edit the
set points of your model variables. This setting alters the model display and
also any calculations involving the set points throughout CAGE. Altering
this setting is the same as altering the set points in the Variable Dictionary,
see “Using Set Points in the Variable Dictionary” on page 2-6.

Following is an example of the Models display.

2-12



Setting Up Models

List of the current models

-l
File Edit Wiew Model Tools ‘window Help 1!
D@ME| X & LiEryE
Processes Model= |
M arne | Type | [nputz | Lo,
- T0_Modsl MEC model SPK.L N, A E
4. HO=FLOW M odel MEBLC model SPE.LLM.AE
Feature
4| | 3
a0 _ L
. = Connections T2 _Model |
A =
Tradeoft
an
G0
40
F 20
0
-20

0.5 4000

L EDRP
F A
|L X-axiz IN - i Y-axis IN = i

Model connections display Model display

The icons in the Models list indicate the type of model, as listed in the Type
column. As shown in the following illustration, a model can be a Model
Browser statistical model, the boundary of a model, the prediction error

2-13
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variance (PEV) of a model, a user-defined function model, or a feature model
(converted from a feature).

% Statz_model

ﬁﬁ Boundany_model

i Function_model

-t PEY_model

%l Feature_model

You can use the “Model Properties” on page 2-21 dialog to switch a model
output between the model value and the boundary or PEV of the model. For

function models see “Adding New Function Models” on page 2-16. You can
convert a feature to a model by selecting Feature > Convert to Model.

Importing Models

CAGE enables you to calibrate lookup tables by referring to models
constructed in the Model Browser.

CAGE can only open Model-Based Calibration Toolbox™ model files. You
can import models from project files (.mat, .cag) and from exported model
files (. exm).

Import Models From Project

You can use the CAGE Import Tool to select models to import from any
Model-Based Calibration Toolbox project file produced in CAGE or the Model
Browser (.mat or .cag). You can replace suitable models in your current
CAGE project (note that Model Browser models must have exactly the same
input names as the CAGE model you are replacing).

See “CAGE Import Tool” on page 2-26 for instructions.

Import Exported Models File
To import models from a Model Browser exported models file (. exm):

1 Select File > Import > Model.
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2 A file browser dialog opens. Locate the desired file or files.
You can select multiple files. Examples can be found in

matlab/toolbox/mbc/mbctraining. You can select MBC Model (*.exm)
to filter for .exm files.

Click to select the model file, then click Open .

This opens the Model Import Wizard.

3 Select the models that you want to import by highlighting the models from
the list, or click Select All if you want every model.

4 Either:

® Select the check box Automatically assign/create inputs, then you
can click Finish.

® Alternatively to match inputs up manually, instead click Next .
5 Associate the model factors with the available inputs in your session.

For example, to associate the model factor spark with the variable spk
in your session,

) Model Import Wizard =10 x]
Assign Cage tems to use as the model inputs:
Maodel Input Azzigned Input Available nputs
A X A spark
L XL XN
M XM XL
spark spark i XA

o

Xl i1
Cancel | = Back | Mext = | Finizh |

a Highlight a Model Input, spark, in the list on the left and the

corresponding variable, spark, in the list of Available Inputs on the
right.

b Click the Assign Input button.
¢ Repeat a and b for all the model factors.
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6 Click Finish to close the wizard and return to the Models view.

Note You can skip steps 5 and 6 by selecting the Automatically
assign/create inputs box at step 6.

You can now see a display of the model surface and the model connections
(inputs).

See Also

e “Setting Up Models” on page 2-11
¢ “Adding New Function Models” on page 2-16
¢ “Renaming and Editing Models” on page 2-18

Adding New Function Models

A function model is a model that is expressed algebraically. The function
can be any MATLAB® function (including user-defined functions). The only
restriction is that the function must be vectorized, that is, take in column
vectors and return a column vector of the same size, as in this example:

function y = foo(x1, x2)
y = x1 .* x2;

Once you have a function like this, you can create a function model applying it
to any models or variables in your session, like the following example.

foo (NOX, SPK)

For example, you might want to view the behavior of torque efficiency. So you
create a function model of torque efficiency = torque/peak torque.

To add a function model to your session,

1 Select File > New > Function Model.

This opens the Function Model Wizard.

2-16
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2 In the dialog box, enter the formula for your function model. For example,
enter torque_efficiency=torque/peak_torque.

3 Press Enter. CAGE checks that the function is recognized; if so, you can
click Next. If the function is incorrectly entered, you cannot click Next.

4 Select the models that you want to import by highlighting the models from

the list.

5 Click Next.

J Function Model Wizard -0l x|
Select models:
Model Mame ImpLt= Dezcription
torgue_efficiency | peak_torgue, torgue torgueipeak_torgue
Select All | [~ Automstically assignicreste inputs
Cancel | = Back | """ Flest = Fimizh

6 You can select the check box to Automatically assign/create inputs and
click Finish to close the wizard and return you to the Models view, or you
can click Next and go to the next screen. Here you can manually associate
the model factors with the available inputs as follows:

a Highlight a Model Input, e.g., peak_torque, in the list on the left
and the corresponding model, peak_torque, in the Available Inputs
list on the right.

b Click the Assign input button.

Repeat a and b for all the model factors. Click Finish to close the wizard

and return you to the Models view.

You can now see a display of the model and its connections (inputs).
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See Also

o “Setting Up Models” on page 2-11
* “Importing Models” on page 2-14
* “Renaming and Editing Models” on page 2-18

Renaming and Editing Models

Renaming Models
To rename a model,

1 Highlight the model that you want to rename.
2 Select Edit > Rename.

3 Enter the new name for the model and press Enter.

You can also rename the model by selecting a model and clicking the name, or
pressing F2.

Editing Model Inputs

You can adjust a model so that variables, formulas, or other models are the
factors of the model. For example, a model of torque depends on the spark
angle. In place of the spark angle variable, you can use a model of the
maximum brake torque (MBT) as the spark input.

To edit the inputs of a model,

1 Highlight the model.
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2 Select Model > Edit Inputs.

This opens the Edit Inputs dialog box, shown.

Highlight the model input

that you want to change. Highlight the new input.
=101 %]
Azzign Cage fems to uze az the model inputs:
hadel Irgpt ‘ Az=igned Inpy Availahle Inputs:
X spark
il XM XM
L XL i XL
ExH X ECP XA
IMT X ICP X ICP
X X ECP
dhto
fhto_1
7
R | B et
Cance| | = Back | [zt = Fimizh
\
Click Assign Input. Click
Finish

3 Highlight the Model Input that you want to edit, in the list on the left.

4 Highlight the new input for that factor, in the Available Inputs list on
the right.

5 Click the Assign Input button.

6 To close the dialog box, click Finish.
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Note If you want to change the range of a variable in the session, change
the range in the variable dictionary. For more information, see “Using the
Variable Menu” on page 2-8.
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Model Properties

In this section...

“How To Open The Model Properties Dialog Box” on page 2-21
“Model Properties: General” on page 2-22

“Model Properties: Inputs” on page 2-23

“Model Properties: Model” on page 2-24

“Model Properties: Information” on page 2-25

How To Open The Model Properties Dialog Box

Select Model > Properties (or right-click) to view information about the
selected model. This opens the Model Properties dialog box where you can
see the model type, definition, inputs, availability of PEV and constraints,
creation date, user name, and toolbox version on the following tabs: General,
Inputs, Model, and Information.
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Model Properties: General

<) MBC Model Propetties O] x|

General I Inputs I Mol | Infartmation I

) BTG

Type: MEC maodel
Mumber of inputs: 4
Constraints: Available

Prediction errar variance:  Awailahle

Outpout ssturetion limits: | -nt = inf =]

Output quartity: * Model value

= Prediction error variance of model

" Boundary constraint of mocdel

Ok I Cancel | Help |

Here you can see the model type (such as MBC model or function model), the
number of inputs, and the availability of constraints and Prediction Error.

You can use the radio buttons to select the Qutput Quantity to be the

* Model Value
¢ Prediction error variance of model

¢ Boundary constraint of model

The Output Quantity is the model value used everywhere in CAGE (surface
plots, optimization objectives or constraints, tradeoff, etc.).

Choose one of the last two options if you want to use a model’s prediction error
variance (PEV) or boundary as a switching input to a function model. You
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can duplicate the original model, choose the PEV output quantity, and feed
it in to your switch function.

The option Boundary constraint of model evaluates only the boundary of
the model output. Any boundary information from the inputs is ignored (e.g.,

if inputs are also models with boundary models).

You can enter values in the Output saturation limits edit boxes to set
bounds on the model output values.

Model Properties: Inputs

Model Properties x|

General  Inputs I Model | Information I

Iminediste inputs:

Item I Type I
fAMBT MBC model

x LOAD ariablz

x EMGSFEED Yariable

XA aniable

xE Yariable

Al varishle dependencies:

Item | Type |
x EMGSPEED Wariable
x LOAD Warniahle
X INTCAM ‘Y ariabls
X EXHCAM Wariable
XA aniable
xE Yariable

Ok I Cancel |

Here you can view all the immediate inputs and variable dependencies of
your model. For some models the two lists will be the same; in the example
shown one of the inputs is another model (MBT) so the variable dependencies
list also shows the variable inputs for that model. This information is shown
graphically in the Connections pane.
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Model Properties: Model

Model Properties x|

Genaral | Imputs Model I Infartration |

Model project file:  Unknown Load Madel |

Mocel path: testgraZtg modelsTo

Mociel definition:

Model for TG r
Coding

SPK: [-14.96 55.72] — SPK: [-14.96,55.72]

L [02,0811] = L [-1,1]

I [730,6300] — M [-1,1]

A AT E] = A [-11]

E[012] = E [-1,1]

fISPKLgf[L.H.AE]}}
Local: f{x12%1%)
DatumType: Maximum
Glokal Models
. T - 3
knot < fL7 2 A% B2 § = B0 N, =2 Jﬂ
K| ¥

ok I cancel |

Here you can view the model definition, the project file, and the model path.
Function model definitions are shown here. For MBC models the model
definition (showing the parameters and coefficients of the model formula) is
the same information you would see in the Model Browser part of the toolbox
when selecting View > Model Definition.
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Model Properties: Information

) MBC Model Propetties =10l x|

Generall Inputs I Model  Information I

Field Wallie
User Unkrnawn
Ciate 27-Sep-2005
MEBC Yersion 213

Ok I Cancel | Help |

Here you can see the user name associated with the model, the date of
creation and the version number of the Model-Based Calibration Toolbox™
product used to create the model. If you added any comments to the export
information in the Model Browser Export Models dialog this information
also appears here.
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CAGE Import Tool

2-26

You can use the CAGE Import Tool to select items to import from any
Model-Based Calibration Toolbox™ project file produced in CAGE or the
Model Browser (.mat or .cag). This can greatly simplify setting up new
projects, and also making changes to existing projects, for example to make
use of new models in an existing optimization and calibration.

You can import Model Browser models from any project file or direct from the
Model Browser when it is open. You can import the following CAGE items
from any CAGE project: models (including feature and function models),
variables, normalizers, tables, features, optimizations, datasets and tradeoffs.

You can replace suitable items in your current CAGE project with imported
items. You can see if an item is replaceable in the Import dialog, where the
Replace action becomes available.

Note that Model Browser models (but not CAGE models) must have exactly
the same input names as the CAGE model you want to replace. You can
replace models, variables, normalizers, tables and features. You cannot
replace optimizations, datasets or tradeoffs. You cannot replace tables used in
tradeoffs with tables of a different size.

To use the CAGE Import Tool:

1 Select File > Import From Project.
The CAGE Import Tool appears.

2 You can choose a project file or import directly from the Model Browser
if it is open.

¢ If the Model Browser is open, the list is automatically populated with a
list of available items in the open project.

¢ To import from a file, click the Import From Project File button.
A file browser dialog opens. Locate the desired file and click Open.
3 The CAGE Import Tool displays the available items. Select the items you

want to import from the list. Press Ctrl+A to select all items, or Ctrl+click
or Shift+click to select multiple items in the list.
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) CAGE Import Tool i I ]

Ivpott From Model Browser | Import From Project File... |

Current project: CmbcyGasoline_project mat

Finck: I Type: ol -

I~ Match case

CP/EXTEMP

e se G 1e_p Dl
4 Response Gaszoline_project/DIYCPRESIDFRAC
4“ PS22_ BTG Switch Gaszoling_projectDINVCPEBETRPS22
hPOLYQ_E)(TEMP Swritch Gazoline_project/DIYCPEXTEMPPOLY 2
1 POLY2_RESIDFRAC Swvitch Gasoline_project DIYVCPRESIDFRACE ..
Datum Gasoline_pro CPEBTC ot

Responge Feature Gazoline_project/DIYCPETOPS22knot
Response Feature Gazoline_project/DIYCPETRPS22imax

Response Feature Gasoline_projectDIYVCPEBETQPS22/Bh..
Fesponse Feature Gaszoline_project/DINCPETGPS22/EI0...
Response Festure Gazoling_projectDIvCPEXTEMPPOL ...
Response Feature Gasoline_project/DIYCPEXTEMPROL

Response Feature Gaszoline_project/DINCPEXTEMPPOL ..

]

Responze Feature Gasoline_projectDIYCPRESIDFRACIP...
Responze Feature Gasoline_project DIVCPRESIDFRACE... |

Impart Selected tems... |

Close | Help |

You can use the Find and Type controls to filter the item list:

¢ If you are importing from a Model Browser project you can select
Response, Switch, Datum or Response Feature from the Type list to
display a single model type only.

¢ If you are importing from a CAGE project you can select Variable,
Model, Normalizer, Table, Feature, Optimization, Dataset, or
Tradeoff from the CAGE items in the Type list. For models the
Subtype column displays whether a model item is an MBC model,
function model or feature model.

¢ Enter text in the Find edit box to find particular item names. You can
also select the box to Match case

4 Click the Import Selected Items button.

5 The Import dialog opens displaying the items you selected for import.
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) Import

Import from MBCmodel project
Thesze models will be imported to CAGE when you click Ok,
If an model ix replaceskls in CAGE you can select Replace or Create nesw inthe Action colukmt,
Double-click CAGE Model Name cells to edit names.

s

=0 x|

Qrigingl Matne Action CAGE Model Mame

kBTG Replace =l

<\ EXTEMP Crestenew = |EXTEMP

4\ knot Replace ;||knat |

[~ Wiew "B after itnpart

QK I Cancel |

Help |

e To edit item names, double-click the column cells of the CAGE Item

Name (or CAGE Model Name if importing models).

e If it is not possible to replace items in the current CAGE session then
Create new is displayed in the Action column. Ifit is possible to replace
an item in the current CAGE session with an imported item, the Action
column cell becomes a drop-down menu where you can select Replace or
Create new. If an exact name match item is available to be replaced the
Action drop-down menu automatically displays Replace. Change this
to Create new if you do not want to replace the existing item.

¢ When replacing items, double-click the CAGE Item Name column cells

to open a dialog to select the correct item to replace.

¢ (Clear the View new item check box if you do not want CAGE to switch
to the appropriate view for the top item in the import list when you
dismiss the dialog. The CAGE Import Tool remains open either way.

¢ (Click OK to import the items.

6 Click the Close button to close the CAGE Import Tool when you have
finished importing items.

See also:

* “Importing and Exporting a Variable Dictionary” on page 2-5
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¢ “Import Exported Models File” on page 2-14
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Specifying Locations of Files

You can specify preferred locations of project and data files, using
File > Preferences.

Project files have the file extension .cag and store entire CAGE sessions.

Data files are the files that form part of the CAGE session. For example, the
following is a list of some of the data files used in CAGE:

¢ Simulink® diagrams (.md1)

¢ Experimental data (.x1s, .csv, or .mat)

Variable dictionaries (.xml)

Models (.exm)

To specify preferred locations for files,

1 Select File > Preferences. This opens the dialog box shown.

) CAGE Preferences I ]

File Locations I IUzer Information I Optimization I

Projects:

|

Data files: | E"'l
|
|

Madel files:

Strategy files:

QK I Cancel |

2 Enter the directory or directories where your CAGE files are stored.

Alternatively, click @ to browse for a directory. You can specify directories
for projects, data files, model files and strategy files.

3 Click OK.
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This section includes the following topics:

Setting Up Tables (p. 3-3)

Adding, Duplicating and Deleting
Tables (p. 3-4)

Editing Tables (p. 3-7)

Using the History Display (p. 3-17)

Calibration Manager (p. 3-21)

Table Properties (p. 3-26)

An overview of the functionality in
the Tables view.

How to add, copy and remove tables.

How to view and edit tables, fill
tables by extrapolation, and use the
Table menu.

Comparing and reverting to previous
versions.

The Calibration Manager dialog box
enables you to manage the sizes,
values, and precision of all items
that can be calibrated. You can

set these properties manually or
from a calibration file. This section
describes how to use the Calibration
Manager to set up tables and copy
table data from other sources.

How to use the table properties
dialog to set limits on table values,
and specify precision (floating-point,
polynomial ratio fixed point, or
lookup table fixed point) to suit your
ECU.
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About Normalizers (p. 3-33)

Normalizer View (p. 3-35)

Inverting a Table (p. 3-42)

Importing and Exporting
Calibrations (p. 3-49)

What are normalizers? A normalizer
is the axis of your lookup table. It
is the same as the collection of the
breakpoints in your table.

This section describes what you can
see when you highlight a normalizer
in the tree display: the input/output
display, normalizer display, and
breakpoint spacing display; and how
to edit, lock and delete breakpoints.

How to use CAGE to invert tables.

How to export your calibrations.
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Setting Up Tables

Select the Tables view by clicking the Tables button. It opens automatically if
you add a table using the File > New > Table menu items.

Tables

The Tables view lists all the tables and normalizers in the current CAGE
session.

Here you can add or delete tables and normalizers, and you can calibrate
them manually. Once you have added new tables here you can also fill them
using experimental data by going to the Data Sets view.

The next sections cover:

¢ “Adding, Duplicating and Deleting Tables” on page 3-4

e “Editing Tables” on page 3-7

¢ “Using the History Display” on page 3-17

e “Calibration Manager” on page 3-21

¢ “About Normalizers” on page 3-33

You can use the History display (from any other table or normalizer view
in CAGE) to view and reverse changes and revert to previous versions of

your tables. Use the Calibration Manager to set up tables manually or from
calibration files.

See also

e “Editing Tables” on page 3-7 for information on using the table view
functionality once you have added tables to your project
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Adding, Duplicating and Deleting Tables

In this section...
“Adding Tables” on page 3-4

“Duplicating Tables” on page 3-5

“Deleting Tables” on page 3-5

Adding Tables

To add or delete tables, you can first select the Tables view, or CAGE
automatically switches to this view if you add a table using the File > New
menu items.

Tables

The Tables view lists all the tables and normalizers in the current CAGE
session.

To add a table to a session,

1 Decide whether you want to add a one- or a two-dimensional table.

For example if you want to add a modifier table to account for the variation
in exhaust gas recirculation, add a one-dimensional table (which has one
input). If, however, you want to add a table with speed and load as its
normalizer inputs, then add a two-dimensional table.

2 Select File > New > 1D Table or File > New > 2D Table as appropriate.
Adding new tables automatically switches you to the Tables view.
3 In the Table Setup dialog you can enter the table name, number of rows

and columns and initial value, and select the input variable (or variables)
from the drop-down menus.

3-4
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4 Click OK to add the new table. CAGE automatically initializes the
normalizers of the table by spacing the breakpoints evenly over the ranges
of the selected input variables.

Note You can also select Tools > Calibration Manager to change the
size of a table. For information, see “Setting Up Tables” on page 3-3.

You can rename tables by first selecting the table, then

® Press F2, or

e Select Edit > Rename.

You can manually calibrate by entering values in any table. You can also fill
tables using experimental data or optimization output by going to the Data
Sets view; see “Tutorial: Filling Tables from Data” in the Getting Started
documentation.

Duplicating Tables

To copy a table or a normalizer from a session,

1 Select the Tables view.
2 Highlight the required table or normalizer.

3 Select Edit > Duplicate table_name (‘table_name’ is the currently selected
table).

See also “CAGE Import Tool” on page 2-26 to add existing tables from other
CAGE project files.

Deleting Tables

When you are calibrating a collection of tables using either Feature or
Tradeoff calibrations, you cannot easily delete tables without affecting the
entire calibration. When deleting items, you must delete from the highest
level down. For example, you cannot delete a table that is part of a feature;
you must delete the feature first.
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To delete a table or a normalizer from a session,
1 Select Tables view.

2 Highlight the required table or normalizer.

3 Click ﬂ; or press Delete; or select Edit > Delete table_name (‘table_name’
is the currently selected table).
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Editing Tables

In this section...

“Introducing the Table View” on page 3-7
“Viewing and Editing a Table” on page 3-10
“Using the Graph of the Table” on page 3-11
“Filling a Table by Extrapolation” on page 3-12
“Table Menu” on page 3-13

“Arithmetic Operations On Table Values” on page 3-15

Introducing the Table View

When you select a table in the tree (under feature or tables), you see the
Table view.

Note For feature calibration (filling and optimizing table values by comparing
a strategy and a model), see “Calibrating the Tables” on page 4-28.

In CAGE, a table is defined to be either a one-dimensional or a
two-dimensional lookup table. One-dimensional tables are sometimes known
as characteristic lines or functions. Two-dimensional tables are also known as
characteristic maps or tables. CAGE regards them both as similar objects.

Each lookup table has either one or two axes associated with it. These axes
are normalizers. See “About Normalizers” on page 3-33.

For example, a simple MBT feature has two tables:

* A two-dimensional table with speed and relative air charge as its
normalizers

® A one-dimensional table with AFR as its normalizer
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The example following is a feature view. In the Tables view for manual
calibration, you do not see the lower comparison pane because you are not

comparing tables with a model.

Selected table node 1. Table 2. Graph of the table
|
Feature | L4 500 1054 522 1609 244 MB35
=¥ Mew Feature 0.1 -3.866 -3.219 -2.594 -
iy T 0.155 -I 3.088 3.351
-l Nomn_M 0.245 12,57 13 G4 14.018 1
4 Mom_L 039 s | 2m719 20724 3033 3
Eds FA 0552 43623 50.032 50,951 5
4 Nom_A 0727 64513 66 076 |5 67151 &
E-d F_SPK 0827 76324y 7T A 78 824 7
e Norm_SPK 0,591 g4 164 85527 85357 g
0.945 a0 945 921722 92 794 g
1 97 597 95519 95574 g
Maaeand
o
Plat type: IFeature (hlue) & hadel =]
Feature and Model Inputs
Mame “alue
M 500 to §500, 20 pairts
L 01101, 20 points
& 14 35
SPK 25
Error statistics
hlaimum error 0.316 A
hean square error 000252 iy
1 | ¥ [Total SCUAFE Errar 3.528 Rd
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The parts of the display are numbered and labeled as follows:

1 The table displays the values of the breakpoints and the values of the table.

The table breakpoint values are not necessarily identical to the normalizer
breakpoints. When you create a table the breakpoint values are the same
as the normalizer values. If you delete breakpoints from the normalizers
the table size does not change, so the table column and row breakpoint
values are interpolated between the remaining normalizer breakpoints.
(See “Viewing and Editing a Table” on page 3-10.)

2 The graph of the table pane displays the table values graphically. (See
“Using the Graph of the Table” on page 3-11.)

3 The comparison-of-results pane displays a comparison between the current
output of the strategy and the feature model. (Only visible when calibrating
a feature, see “Inverting a Table” on page 3-42.)

Note You can view and revert table changes in the History display
by selecting View > History. For information, see “Using the History
Display” on page 3-17.

This section describes each of these parts in detail.
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Viewing and Editing a Table

The table displays the values of your lookup table and displays the
breakpoints of the normalizers. For example, the following table shows a
lookup table with speed and relative air charge (load) as its normalizers.

Locked cell in the Cell in the
extrapolation mask extrapolation mask
Lk 500 1054 522 1609244 2163.566
0.1 -3 066 232149 -2 594 -2 ma
0.155 2 466 3.085 3.351 3263
0.245 12 87 13.644 14018 135985
0.391 & 2587149 29724 30.33 30.553
0.582 45 623 50,032 50.951 21 49
0.727 64.513 BE.076| & 67 .151 67757
0.527 TE.324 o 77823 75.524 A
0.591 54164 85.527 66357 86.757
0.945 90,945 g2 122 92 794 92 953
1 97 597 95.519 95674 95 506
R | 2
Locked cell — Selected cell
(locked)

To edit a value in the table, double-click the cell, then you can enter a value.
Selected cells are blue except for the focussed cell which is white and outlined
(typing edits the focussed cell). You can right-click to Copy or Paste values.
You can also edit table values using the table graph, see below.

See also “Filling a Table by Extrapolation” on page 3-12, and “Arithmetic
Operations On Table Values” on page 3-15 for information on applying
arithmetic operations to selected cell values or whole tables.

Note You can revert table changes in the History display. Select
View > History. See “Using the History Display” on page 3-17.
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Locking and Unlocking Cell Values

When you are satisfied with a region of the table, you might want to lock the
cell values in that region, to ensure that those values do not change.

To lock or unlock a cell value, right-click the cell and select from the menu.
Locked cells have a padlock icon in the display. You can also lock an entire
table using the Table menu.

Using the Graph of the Table

The table view displays both the table values and a graph of the table. This
gives a useful display of the table’s behavior. Shown is an example of a graph
in dragging and rotation mode.

Dragding Enabled

Line indicates which value in the table you are editing

¢ In the default mode, you can rotate the graph of the table by clicking and
dragging the axes.

¢ Select View > Edit Table Surface to alter values in the table by clicking
and dragging vertically any point. In this mode, when you click a point, a
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blue line indicates the selected point in the table. To return to table rotation
mode without altering table values, select View > Rotate Table Surface.

Note When editing the table surface you may drag a value unintentionally
- to return to previous table values, use the History display. See “Using
the History Display” on page 3-17.

Filling a Table by Extrapolation

Filling a table by extrapolation fills the table with values based on the values
already placed in the extrapolation mask. Using the extrapolation mask is
described below.

L]

To fill a table by extrapolating over a preselected mask, click “* or select
Table > Extrapolate.

This extrapolation does one of the following:

If the extrapolation mask has only one value, all the cell values change to
the value of the cell in the mask.

If the extrapolation mask has two or more collinear values, the cell values
change to create a plane parallel to the line of values in the mask.

If the extrapolation mask has three or more coplanar values, the cell values
change to create that plane.

If the extrapolation mask has four or more ordered cells (in a grid), the
extrapolation routine fills the cells by a grid extrapolation.

If the extrapolation mask has four or more unordered (scattered) cells,
the extrapolation routine fills the cell values using a thin plate spline
interpolant (a type of radial basis function).
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Using the Extrapolation Mask

The extrapolation mask defines a set of cells that form the basis of any
extrapolation.

For example, a speed-load (or relative air charge) table has values in the
following ranges that you consider to be accurate:

® Speed 3000 to 5000 rpm
* Load 0.4 to 0.6

You can define an extrapolation mask to include all the cells in these ranges.
You can then fill the rest of your table based on these values.

To add or remove a cell from the extrapolation mask,

1 Right-click the table.

2 Select Add To Mask or Remove From Mask from the menu.
Cells included in the extrapolation mask are colored yellow.

Cells that are locked and in the extrapolation mask are yellow and have a
padlock icon.

When using feature calibration you can also generate the extrapolation mask
from the boundary model or from the predicted error of the model. See
“Filling the Table by Extrapolation” on page 4-34.

Table Menu

All the toolbar button functions are also found in the table menu: Initialize,
Fill, Extrapolate, Fill by Inversion. For information on these see
“Calibrating the Tables” on page 4-28.

The Table menu contains the following other options
¢ Adjust Cell Values. This opens a dialog where you can specify an

arithmetic operation to apply to either the whole table or only the cells
currently selected. Arguments to operations can be numeric (plus 10) or
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percentages (minus 5%). You can set the selected cells to a value or to
the mean. You can also apply user-defined functions. See “Arithmetic
Operations On Table Values” on page 3-15. This function is also in the
table context menu.

Extrapolation Mask
The following items are also in the table context menu:
= Add Selection — Adds selected cells to the extrapolation mask.

= Remove Selection — Removes selected cells from the extrapolation
mask.

= Clear Mask — This ensures that none of the cells are in the
extrapolation mask.

= Generate From PE — Generate extrapolation mask depending on
the value of prediction error (PE). Only available for tables in feature
calibration, as you must have a model to calculate PE. A dialog opens
where you can specify the threshold value of PE below which you want
to include cells in the mask. The dialog contains information about the
range and mean of prediction error for the model to help you select
a threshold.

= Generate From Boundary Model — Generate extrapolation mask to
include only cells within the boundary model. Only available for tables
in feature calibration, as you must have a boundary model.

Extrapolate — Extrapolates values from the cells in the extrapolation
mask to fill the whole table. Also in the toolbar.

Table Cell Locks The following items are also in the table context menu:
= Lock Selection — Locks the selected cells and a padlock icon appears..
= Unlock Selection — Unlocks the selected cells.

= Lock Entire Table — Locks every cell in the current table.

= Clear All Locks — Unlocks all cells in the table.

Convert to Model. This option converts a table directly to a model.

Properties. This opens the Table Properties dialog where you can set
the precision type of the table data. You can also reach this from the
Calibration Manager. See “Table Properties” on page 3-26.
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Arithmetic Operations On Table Values

The Table menu item Adjust Cell Values (also a right-click context menu
item) opens a dialog where you can specify an arithmetic operation to apply
to either the whole table or only the cells currently selected. Arguments to

operations can be numeric (plus 10) or percentages (minus 5%). You can set
the selected cells to a value or to the mean. You can also apply user-defined
functions.

1 Right-click the table or select Table > Adjust Cell Values. The Adjust
Cell Values dialog box appears.

2 Select the operation to apply from the list - plus, minus, times, divide, set
to value, set to mean, or custom operation. Use the custom operation to
specify your own function in an M-file.

3 Use the Value edit box to enter an argument. All operators accept a
numeric argument (e.g. operator = plus, value = 10). You can also enter a
percentage for the operators plus, minus, and set to value (e.g. ‘minus' ‘1%).

4 Select the radio buttons to apply the operation to either the whole table or
only the cells currently selected, and click OK.

You can use the custom operation option to apply user-defined functions.
The custom function is called in this way:

newvalues = customfcn( currentvalue, selectedregion )

Where currentvalue is the matrix of table values and selectedregionis a
logical matrix the same size as the table, that is "true" where a cell is selected
by the user, and false otherwise.

The newvalues matrix should be the same size as currentvalue, and these
numbers are put straight into the table.

EXAMPLES:
function table = addOne( table, region )

table(region) = table(region) + 1;
return;
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function table = randomtable( table, region )
table( region ) = rand( nnz( region ), 1 );

function table = saturate( table, region )
maxValueAllowed = 150;

table( region & table>maxValueAllowed )
minValueAllowed = 100;

table( region & table<minValueAllowed ) = minValueAllowed ;
return

maxValueAllowed;

As an illustration, to use the saturate example:

1 Save the function text in an M-file named saturate.m.
2 Click and drag to select a region of cells in a CAGE table.
3 Right-click and select Adjust Cell Values.

4 In the dialog:
e Select custom operation from the Operation list

e Enter saturate in the Value edit box (the first function of that name
found on the MATLAB® path will be used), or click the browse button
to locate the M-file.

¢ Select the radio button to Apply to selected table cells, and click OK.

The selected table cells are saturated between the ranges specified in the
function M-file (between 100-150).

3-16



Using the History Display

Using the History Display

In this section...

“Introducing the History Display” on page 3-17

“Resetting to Previous Versions” on page 3-18

“Comparing Versions” on page 3-20

Introducing the History Display

The History display enables you to view the history of any table or normalizer
in a CAGE session.

The History display lets you

® Revert to previous versions of tables and normalizers (See “Resetting to
Previous Versions” on page 3-18.)

® Compare different versions of tables and normalizers (See “Comparing
Versions” on page 3-20.)
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You can view the History display of a table or normalizer by selecting
View > History.

) istory forhorm T=IY
W ersion | Caomment / Action | Date and Time |
A Optimized 10-0ct-2005 144101
4 Set uzing share ave curvature algorithnm 07-0ct-2005 12:09:43 Reaet |
3 Breakpoints linearly autozpaced 07-Oct-2005 12:09:33
2 M anually initialized from Calibration Manager 07-0ct-2005 12:09:00 add
1 Created 07-0ct-2008 12:07. 37
Remoyve |
Edit...
Input Ot
500 i -]
1117 892 1
171891417 2
2308.745 3
2576836 4
341434 5
39258439 =]
4444 367 7
4957 13 g
5475796 9 —
2985.711 10 j
Cloze | Help

The upper pane of the History display lists all the versions of the highlighted
object.

The lower pane displays the normalizer or table of the highlighted version.

Resetting to Previous Versions

To reset the normalizer or table to a previous version, select View > History
to open the History display.
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1 Highlight the previous version that you want to revert to.

2 Click Reset.
3 Click Close to see the updated table view.

Note Tables are independent of normalizers, so if you reset a table to a
previous version you must also reset the normalizers to that version (if

they have changed).

To remove previous versions of the object or comments,

1 Highlight the version that you want to remove.
2 Click Remove.
Adding and Editing Comments About Versions
To add comments,

1 Click Add.

2 In the dialog box enter your comment.

3 Click OK. A new History set point is added when you add a comment.
To edit comments,

1 Select the comment that you want to edit.

2 Click Edit comment.

3 In the dialog box, edit the comment.

4 Click OK.
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Comparing Versions

To compare two different versions of a normalizer or table, highlight the two
versions using Ctrl+click. Note the following:

® The lower pane shows the difference between the later and the earlier
versions.

e (Cells that have no entries have no difference.
® (Cells that have red entries have a higher value in the later version.

e (Cells that have blue entries have a lower value in the earlier version.

It

-1.621
-3.266
1.694E-3
-9.0584
-18.105
-258
-30.091
-15.32
-5 626
-29.554
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Calibration Manager

In this section...

“Introducing the Calibration Manager” on page 3-21
“Setting Up Tables Manually” on page 3-21
“Setting Up Tables Using an Existing Calibration File” on page 3-22

“Copying Table Data from Other Sources” on page 3-25

Introducing the Calibration Manager

To change the size of tables in CAGE, you use the Calibration Manager dialog
box. Open this tool by selecting Tools > Calibration Manager or by clicking

@ on the toolbar.

You can either set up your tables manually or from a calibration file. You can
also copy table data from other sources.

Note that you can enter the required inputs, number of rows and columns
and an initial value for table cells when you add a new table using the
File > New menu items. See “Adding, Duplicating and Deleting Tables” on
page 3-4. You can use the Calibration Manager to change the sizes, values
and precision of tables.

Setting Up Tables Manually

1 Select the normalizer or table to set up from the list on the left.

2 Enter the number of rows and columns in the edit boxes on the left and
select initial values for each cell in the table.

3 Click Apply.

Fows: Wi‘ Yalue: I Esil
Calum.. I_?il Apply |
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Note When initializing tables for a feature calibration (comparing a model
to a strategy) you should think about your strategy. CAGE cannot fill those
tables if you try to divide by zero. Modifier tables should be initialized with
a value of 1 for all cells if they are multipliers, and a value of 0 if they are to
be added to other tables. See “Initializing Table Values” on page 4-29.

4 Check the display of your table, then click Close.

Setting Up Tables Using an Existing Calibration File

1 Open the file by clicking g
This opens the Import Calibration Data dialog box.

2 You can select whether you want to import from File or from ATI Vision.
See “Importing and Exporting Calibrations” on page 3-49 for details.

3 If importing from file, browse to the calibration file, select it, and click
Open. Note that empty data is filtered out and any empty variables will
not appear.

Note tutorialcal.mat is an example calibration file in the mbctraining
folder.

If importing from ATI Vision, use the Connection Manager dialog to select
the required calibration. See “Importing and Exporting Calibrations” on
page 3-49 for instructions.

4 Highlight both the table in the Calibration File Contents pane and the
table in the Project Calibration Items pane that you want to associate
with it.

5 Associate these two items by clicking



Calibration Manager

To associate all the items listed in the Project Calibration Items
pane with items having the same names listed in the Calibration File

Contents pane, click 49~

6 To find particular names in a large calibration file, click the Calibration
File Contents list, and type the first few letters of the item that you are
searching for. The cursor moves to the letters specified as you type.
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7 Check the display of your table, then click Close.

Select the axis or table Association buttons Contents of
to be calibrated. calibration file
-} Calbrat —_— x
Manually ) Calibration Manager x|
set up the J u e
table or [ & B 7
normalizer. ﬁ Calibration File Cortents
B Mew 20 Table (B Mame Size
----- i_.g’__ MMarmnaliser - Y
4 LNomaliser ;I s
: I_ - : I_ - Calibration File Information
Fliowys: 10 El Walue: BS EI S : . _
= . Calibration file
alum.. I 7 El Apphy Total rurmber of tems
Precizion: IEEE Double Eumzer D: 122 :as:es
L Limber o ables
Precision Edit Precisian... 5
Mumber of scalar tems
Project ter: Mewe 20 Takle
LA =00 1000 1200 2000 2300 3000
0.1 11877 13673 15.092 15067 14 13445 [
0.2 23277 25356 27 264 2712 25463 24 971
0.3 34519 36827 3377 39185 I J6EYS
0.4 45 578 47 954 51103 51 B3Y 4945 43 B11
0s 565092 58551 61514 B2 BEY E1.02 B0.425 | B8
0E E7 9458 B9 EYD 1413 Foazx2 E9.04 Mar2
or T3 79754 a1 558 8016 75789 0.a0z %
4 | Ll_l
(10 x 71 2D table Cloze |

Check the display of your table

Note You can add additional file formats to configure CAGE to work with
your processes.
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Contact The MathWorks for details about adding file formats at
http:/www.mathworks.com/products/mbc/.

Copying Table Data from Other Sources
You can paste table values from other applications, such as Excel, by copying

the array in the other application and clicking Paste B in the Calibration
Manager:

1 Open the desired file and copy the array that you want to import.
2 In the Calibration Manager dialog box, click Paste B

You can also set up a table from a text file:

B

1 Click Set Up From ASCII File in the toolbar.

2 Select the desired file, then click Open.

Note If the size of the table is different from the file that you are copying,
CAGE changes the size of the table in the session.
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Table Properties

3-26

In this section...

“Opening the Table Properties Dialog Box” on page 3-26
“Table Properties: General Tab” on page 3-26
“Table Properties: Table Values Precision Tab” on page 3-26

“Table Properties: Inputs Tab” on page 3-32

Opening the Table Properties Dialog Box
In the Tables view, to reach the Table Properties dialog,

e Right-click a table node and select Properties.
¢ Select a table, then select Table > Properties

Table Properties: General Tab
The selected table name, type and number of inputs are displayed.

Use the Table value limits edit boxes to set a range of values restricting
the values in the table.

When you are done, click OK.

Table Properties: Table Values Precision Tab

The Table Values Precision tab contains the same settings as the Edit
Precision dialog box (reached by clicking the Edit Precision button in the
Calibration Manager dialog box).

These settings allows you to edit the precision of the number in selected tables
and normalizers according to the way tables are implemented in the electronic
control unit (ECU). The ECU designer chooses the type of precision for each
element to make best use of available memory or processor power.



Table Properties

To edit the precision of a table or normalizer,

1 Clear the Read-only check box to make the precision writable.

2 Select the Precision type you require for the table:
® Floating Point (See “Floating-Point Precision” on page 3-27.)

® Polynomial Ratio, Fixed Point (See “Polynomial Ratio, Fixed Point”
on page 3-28.)

® Lookup Table, Fixed Point (See “Lookup Table, Fixed Point” on page
3-31.)

Floating-Point Precision

The advantage of using floating-point precision is the large range of numbers
that you can use, but that makes the computation slower.

There are three types of floating-point precision that you can choose from:

¢ TEEE double precision (64 bit)
¢ TEEE single precision (32 bit)

¢ Custom precision

If you choose Custom precision, you must specify the following:

¢ Number of mantissa bits

¢ Number of exponent bits

3-27



3 Tables

) 2D Table Properties =10l x|

General  Table Yalues Precision I Inputs |

Precizion type: IFInating Point d [ Read-only

% |EEE double precizion
™ |EEE single precizion

" Custom precision

Mumbet of Bits far rEntisss; I 52 i‘
Mumtier of bits for exponent: I 11 i‘

Ok I Cancel | Helpr

See Also.

¢ For more information on IEEE double precision in MATLAB®, see Moler,
C., “Floating points,” The MathWorks Company Newsletter, 1996.

Polynomial Ratio, Fixed Point

The advantage of using fixed-point precision is the reduction in computation
needed for such numbers. However, it restricts the numbers available to
the user.
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Table Properties

For example, the polynomial ratio is of the form (see the ratio shown)

,_50x+0
Y= 0+ 285

To edit the polynomial ratio,

1 Select the Numerator Coefficients edit box and enter the coefficients. In
the preceding example, enter 50 0.

The number of coefficients determines the order of the polynomial, and the
coefficients are ordered from greatest to least.

2 Select the Denominator Coefficients edit box and enter the coefficients.
In the preceding example, enter 0 255.

3 To edit the size of the precision, choose from

BYTE (8 bits)

WORD (16 bits)

LONG (32 bits)

CUSTOM (Enter the number of bits in the edit box)

4 Select the Signed check box if you want the numbers to be negative and
positive.
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) 2D Table Properties =10l x|

General  Table Yalues Precision I Inputs |

Precizion type: amial Ratio, Fized Paint H [~ Read-only
50
¥=x
Resalved values
0

— Polynomial mapping

Mummerstor coefficients: I 10
Drenominstar coefficients: I 01

— Fixed paint storage

Mumber of kits: " Byte (8 bitz)
" Wiord (16 bits)
{* Long (32 hits)

= Custom: I 32 il
Fixed poirt position: I 1 i‘

[¥ Signed

Ok I Cancel | Helpr
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Lookup Table, Fixed Point

) 2D Table Properties =10l x|

General  Table Yalues Precision I Inputs |

Precizion type: ILnnkup Tahle, Fixed Point d [~ Read-only

50

¥=x
Resalved values

— Look-up takble data

Physical data; | 050

Hardware data: I 0a

— Fixed poirt storage

Mumber of hits:

" Wiord (16 bits)
™ Long (32 hits)

= Custom: I 5 il
Fixed poirt position: I 1 i‘

[¥ Signed

Ok I Cancel | Helpr

The advantage of using fixed-point precision is the reduction in computation
needed for such numbers. However, it restricts the numbers available to
the user.

For example, consider using a lookup table for the physical quantity spark
advance for maximum brake torque (MBT spark). Typically, the range of
values of MBT spark is 0 to 50 degrees. This is the physical data. The ECU
can only store bytes of information and you want to restrict the hardware
store to a range of 0 to 8, with at most one decimal place stored.

To adjust the fixed-point precision of the lookup table:
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1 Select the Physical Data edit box and enter the range of the physical data.
2 Select the Hardware Data and enter the range to store.

3 To edit the size of the precision, choose from
e BYTE (8 bits)
* WORD (16 bits)
* LONG (32 bits)
e CUSTOM (Enter the number of bits in the edit box)

4 Select the Signed check box if you want the numbers to be negative and
positive.

In the example shown, the hardware is restricted to 8 bytes and to one

decimal place.

Table Properties: Inputs Tab
This tab displays the inputs and variable dependencies for the selected table.
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About Normalizers

What are normalizers? A normalizer is the axis of your lookup table. It is the
same as the collection of the breakpoints in your table.

For information on using the controls, see “Normalizer View” on page 3-35

CAGE distinguishes between the normalizers and the tables that they belong
to. Using models to calibrate lookup tables enables you to perform analysis of
the models to determine where to place the breakpoints in a normalizer. This
is a very powerful analytical process.

Note For information on optimizing breakpoints with reference to a model (in
feature calibration), see “Calibrating the Normalizers” on page 4-15.

It is important to stress that in CAGE a lookup table can be either
one-dimensional or two dimensional. One-dimensional tables are sometimes
known as characteristic lines or functions. Two-dimensional tables are

also known as characteristic maps or tables. This is important because
normalizers are very similar to characteristic lines.

For example, a simple strategy to calibrate the behavior of torque in an
engine might have a two-dimensional table in speed and relative air charge (a
measure of the load). Additionally, this strategy might take into account the
factors of air/fuel ratio (AFR) and spark angle. Each of these compensating
factors is accounted for by the use of a simple characteristic line. In CAGE,
these characteristic lines are one-dimensional tables. In the example strategy,
there are the following tables and normalizers:

¢ One characteristic map: the torque table
® Six characteristic lines:
= Two tables: one for AFR and one for spark angle
= Four normalizer functions: speed, load, AFR, and spark angle

Notice also that a breakpoint is a point on the normalizer where you set
values for the lookup table.
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Thus, when you calibrate a normalizer you place the individual breakpoints
over the range of the table’s axis.
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Normalizer View

In this section...

“Introducing the Normalizer View” on page 3-35
“Editing Breakpoints” on page 3-37
“Input/Output Display” on page 3-38
“Normalizer Display” on page 3-38

“Breakpoint Spacing Display” on page 3-39

Introducing the Normalizer View
The normalizer node shows the Normalizer view, which displays

® One normalizer if the table selected is one-dimensional

e Both normalizers if the table is two-dimensional

Note If the table has two normalizers, both are displayed, the normalizer for
the table columns at the top, the normalizer for the table rows below. This is
true whichever normalizer on the tree is highlighted.

See “Editing Breakpoints” on page 3-37.
The parts of the display as shown in the example below are:
® “Input/Output Display” on page 3-38. This shows the breakpoints of the

normalizer.

* “Normalizer Display” on page 3-38. This is a graphical representation of
the Input Output display.

® “Breakpoint Spacing Display” on page 3-39. This shows a slice of the model
(in feature calibration) over the range of the breakpoints.

® The comparison pane (for feature calibration with reference to a model). For
information, see “Viewing the Normalizer Comparison Pane” on page 4-25.
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Selected node

1. Inout output display

2. Normalizer display

3. Breakpoint spacing display
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Editing Breakpoints
To edit breakpoints:

® Double-click on a cell in the Input or Output column and edit the value.

® (Click and drag a breakpoint in the Normalizer Display graph or the
Breakpoint Spacing display.

To view the history of the normalizer function, select View > History from
the menu. This opens the History dialog box where you can view and revert to
previous versions. For a more detailed description of the History dialog box,
see “Using the History Display” on page 3-17.

Locking and Unlocking Breakpoints

Locking breakpoints ensures that the locked breakpoint does not alter. You
might want to lock a breakpoint when you are satisfied that it has the correct
value.

To lock a breakpoint, do one of the following:

¢ Right-click the selected breakpoint in the Input/Output display and select
Lock. Locked breakpoint cells have padlock icons.

¢ Right-click the selected breakpoint in the Normalizer Display or
Breakpoint Spacing display and select Lock Breakpoint. Locked
breakpoints are black.

Similarly use the right-click context menus to unlock breakpoints.

Deleting Breakpoints

Deleting breakpoints removes them from the normalizer table. There are still
table values for the deleted breakpoints: CAGE determines the positions of
the deleted breakpoints by spacing them linearly by interpolation between
the nondeleted breakpoints.

Deleting breakpoints frees ECU memory. For example, a speed normalizer
runs from 500 to 5500 rpm. Six breakpoints are spaced evenly over the range
of speed, that is, at 500, 1500, 2500, 3500, 4500, and 5500 rpm. If you delete
all the breakpoints except the endpoints, 500 and 5500 rpm, you reduce the
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amount stored in the ECU memory. The ECU calculates where to place
the breakpoints by linearly spacing the breakpoints between the 500 rpm
breakpoint and the 5500 rpm breakpoint.

To delete a breakpoint, right-click the breakpoint and select Delete
Breakpoint.

Deleted breakpoints are green in the Breakpoint Spacing display. You can
restore them by right-clicking and selecting Add Breakpoint.

Input/Output Display

Input Qutput
500 I

1055
1609
2164
2718
3273
3828
4332
4836
5391
58495
G500

IR L= Ri==h e RR=R A RS TR RN

—_ =

The table consists of the breakpoints of the normalizer function.
The table has inputs and outputs:

¢ The inputs are the values of the breakpoints.
¢ The outputs refer to the row/column indices of the attached table.

To change values of the normalizers in the Input Output display, double-click
a cell in the Input column and change its value.

Normalizer Display

This displays the values of the breakpoints plotted against the marker
numbers of the table (that is, the inputs against the outputs).



Normalizer View

Click and drag the breakpoints to move them.

Mormalizer Display

Locked breakpoint

Breakpoint

nz ,04 06 05 1

L
Values of the /

breakpoints

Breakpoint Spacing Display
The Breakpoint Spacing display shows

® A slice through the model in blue (when feature calibrating with reference
to a model)

® The breakpoints in red
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To move breakpoints, click and drag.
Breakpoint Spacing

52
50 /””ﬁ"‘“x )2 A slice through the model: blue

43
46

44 } Y
42

/
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L N |
1] 2000\ 4000 6000
i
Deleted breakpoint: green

Show the Model’s Curvature

You might want to view the curvature of the model to manually move
breakpoints to where the model’s curvature is greatest.

" Breakpoint: red

Locked breakpoint: black
/

To display the model slice as its second-order derivative, the curvature of
the model,

¢ Right-click the model in the Breakpoint Spacing display and select
Display > Model Curvature..

You can revert to displaying the model by selecting Display > Modelfrom
the right-click menu.

Multiple Slice View

By default the Breakpoint Spacing display shows one slice through the
model, shown.
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Slice Through a Model
Surface

Viewing many slices of the model gives a better impression of the curvature of
the model. For example, see the following figure.

Many Slices Through a Model
Surface

To view multiple slices through the model,

¢ Right-click the model slice in the Breakpoint Spacing display and select
Number of Lines and choose the number of slices that you want to view
from the list.
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In this section...

“Overview of Inverting Tables” on page 3-42

“Inverting One-Dimensional Tables” on page 3-44

“Inverting Two-Dimensional Tables” on page 3-46

Overview of Inverting Tables

You can use CAGE to produce a table that is the inverse of another table.
This involves swapping a table input with a table output, and you can invert
1-D or 2-D tables.

Tamque Lond

i

Lood I Tarque

Inverting a table allows you to link a forward strategy to a backward strategy;
that is, swapping inputs and outputs. This process is desirable when you have
a "forward" strategy, for example predicting torque as a function of speed and
load, and you want to reverse this relationship in a "backward strategy" to
find out what value of load would give a particular torque at a certain speed.

Normally you fill tables in CAGE by comparing with data or models. Ideally

you want to fill using the correct strategy, but that might not be possible to find
or measure. If you only have a forward strategy but want a backward one, you
can fill using the forward strategy (tables or model) and then invert the table.

For example, to fill a table normally from a model, you need the model
response to be the table output, and the model inputs to be a function of the
table inputs (or it should be possible to derive the input — for example, air
mass from manifold pressure). If the available model is “inverted“(the model
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response is a table input and the table output is a model input) and you
cannot change the model, you can invert the table in CAGE.

Tarque Spark

Load Load

Spark Tamue

Made| Table ta fill

In the diagram of a table shown, the x- and y-axes represent the normalizers
(which you want to be spark and load) and the z-axis is the output at each
breakpoint (torque). To fill this table correctly from the model is a two-step
process. First you need to fill a table that has the same input and output as
the model, and then fill a second table by inversion.

For the inversion to be deterministic and accurate, the table to be inverted
must be monotonic; that is, always increasing or decreasing. This requirement
is explained by the following one-dimensional example. Every point on the
y-axis must correspond to a unique point on the x-axis. The same problem
applies also to two-dimensional tables: for any given output in the first table
there must be a unique input condition; that is, every point on the z-axis
should correspond to a unique point in the x-y plane. Some table inversions
have multiple values and so do not meet this requirement, just as the square
root function can take either positive or negative values. You can use the
inversion wizard in CAGE to handle this problem; you can control the
inversion process and determine what to do in these cases.

The following example illustrates a table with multiple values. There are two
solutions for a single value of torque. CAGE has a table inversion wizard that
can help overcome this problem. You can specify whether you want to use the
upper or lower values for filling certain parts of the table; this allows you to
successfully invert a multiple-valued function. See the inversion instructions
for 1-D and 2-D tables in the next sections.
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The process of inverting a one-dimensional table is different from the process
of inverting a two-dimensional table.

Inverting One-Dimensional Tables
To invert a one-dimensional table,

1 Ensure that your session contains two tables:
a The first table from your forward strategy, filled
b The second table from your backward strategy, which you want to fill

2 Highlight the second table.

3 Click F or select Table > Fill by Inversion.
The lower pane now acts as a wizard.
4 In the lower pane, highlight the table that you want to invert. Click Next.

5 The next page asks what CAGE should do if it encounters multiple values.
The options are

e Minimum selects the lower of the two if a given number has two possible
inverses (like selecting the negative square root of a number).
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® Maximum selects the uppermost range if a given number has two possible
inverses (like selecting the positive square root of a number).

® Intermediate selects the middle range if a given number has more than
two possible inverses.

® Automatic selects the range that produces the least error (see below; the
last page of the wizard plots the error metric).

For example, the function y = x? is impossible to invert over the range -1 to
1. You can specify to invert the range from 0 to 1, sacrificing the inversion

in the lower range, or the reverse. To select the range from 0 to 1, highlight
Maximum.

The display shows a comparison between the table (green) and the function

x = fU(Ax)).
Choose one of these options, then click Next.

The last page of the wizard has a comparison plot that shows how successful
the inversion has been. If your forward function is y = f(x), and your inverse
function is x = g(y), then, combining these, in an ideal world, you should
have x = g(f(x)). The plot then displays a red line showing x against x and
a green line showing x against g(f(x)). The closeness of these two lines
indicates how good the inversion has been: a perfect inverse would show
the lines exactly on top of each other.

In the following example, the lines are together and then diverge; this plot
can show you which part of your table has not successfully inverted and
where you should try a different routine.
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Inverting a One-Dimensional Table

Plot of A against tself (red), and a plot of 4 against f”(f(ﬂ)) (areen).

Note The automatic inversion routine tries to minimize the total distance
between these lines. This can sometimes lead to unexpected results. For
example, given the function f(x) = x*2 between -1 and 1, if you select either
positive or negative square root as the inverse, this induces a large error
in the combined inverse. If you choose g(y) = sqrt(y), then g(f(-1)) = 1, an
error of 2. To minimize this, the automatic routine might choose to send
everything to zero and accept a medium error over the whole range rather
than a large error over half the range. The more knowledge you have of
the form of the "forward" table, the more you can make an informed choice
about which routine to select.

7 Click Finish to accept the inversion or Cancel to ignore the result and
return to the original table.

Inverting Two-Dimensional Tables
To invert a two-dimensional table,

1 Ensure that your session contains two tables:

a The first table from your forward strategy, filled

3-46



Inverting a Table

b The second table from your backward strategy, which you want to fill

2 Highlight the second table.

3 Click F or select Table > Fill by Inversion.
The lower pane now acts as a wizard.

4 In the lower pane, highlight the table that you want to invert and click
Next.

5 Identify the corresponding signals.

The forward table and backward table share a common input. This page of
the wizard lists all possible combinations of inputs into the forward and
backward tables and asks you to highlight the combination that gives the
two common inputs. To illustrate this, if the forward table gives torque

in terms of the variables engine speed and load, whereas you want the
backward table to give load in terms of RPM and Tq, then the list would
read

e RPM and engine speed
e RPM and load
¢ Tq and engine speed

¢ Tq and load
In this case, you would select the first option.

Highlight the part of the table to invert, then click Next.

6 CAGE asks what to do if it encounters multiple values. The choices are

e Maximum selects the uppermost range (like choosing a positive square
root of a number).

e Minimum selects the lower value if there are two choices (like choosing a
negative square root of a number).

® Intermediate selects the middle range when there are more than two
choices.

® Automatic selects the range that produces the least error. CAGE
tries to choose values to put in the inverse table that minimize an
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error metric similar to the error metric for 1-D tables (see “Inverting
One-Dimensional Tables” on page 3-44).

Choose one of these options and click Next.

7 The last page of the wizard has a comparison plot that shows how successful
the inversion has been. If the forward function is z = f(x,y), and the inverse
function is x = g(y,z), then, combining these, in an ideal world you should
have x = g(y,f(x,y)). The plot then displays a plane showing x plotted against
x and y, and a colored surface showing g(y,f(x,y)) plotted against x and y.
The closeness of these two planes indicates how good the inversion is.

Following is an example. In this case, the forward table is a quadratic (z
= y”2); the backward table is inverted using the positive square root of z
(maximum range). As you can see, this leads to large errors at negative
values of y, but good inversion for positive values of y.

1 Plot of y against tself (hlue), and & plat of v against r”(x,f(x,y)) (colored).

b
[ et | Finizh | Cancel |

Click Finish to accept the result or Cancel to ignore the result and return
to the original table.
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Importing and Exporting Calibrations

In this section...

“Formats” on page 3-49
“Importing Calibrations” on page 3-49

“Exporting Calibrations” on page 3-51

Formats
You can import and export calibrations in various formats.

* You can import/export the following File formats:
= Simple CSV file
= Simple M file
= Simple MAT file
= ATI Vision MAT file
ETAS INCA DCM file (version 1)
¢ Or directly to/from ATI Vision (Version 2006 SP2.1).

To use Vision, a license is required for the "Horizon Scripting/Remote API
Toolkit".

Note Note to use the Vision interface you must first enter mbcconfig
-visioninterface at the command line.

Importing Calibrations

1 Select File > Import > Calibration > File or ATI Vision.

Similarly, from the Calibration Manager, if you click Open Calibration File
in the toolbar, you can select File or ATI Vision in the dialog and proceed
to import in the same way.
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2 If importing a file, a file browser dialog opens.

a Select the type of file you want from the Files of type drop-down list, or
leave the default A11 files (*.*) and CAGE will try to load the file
based on the file extension.

b Browse to the file and click Open to import.

If importing from ATI Vision, the ATI Vision Connection Manager dialog
appears.

=) ATI Yision Connection Manag i ] 4|

—-onnection
Computer:
[optional) I

| Dizconnect |

—Calibration
Project: I:0Ilexamples\visioan‘Samples\Demo wpi
Device: PCH - |
Stratedy: IATI PCM Strategy =
Calibration; ICAGE_Iink_test |

QK | Cancel |

a The Computer field is optional. Leave this field blank if you are using
Vision on the local machine. If you want to connect to a remote machine,
you can enter a machine name or an IP address.

b Click Connect.

If Vision is already running on the machine that you try to connect
to, MATLAB® connects to Vision. If Vision is not running then it is
launched, typically with no project loaded and with the application
window invisible.

¢ If there is a project (.prj file) currently loaded in Vision it appears in
the Project field. If this field is blank then there is no project loaded.
Type a project file name to load that project. Note that the project file
path is relative to the machine on which Vision is running.
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d Select the appropriate Vision Device, Strategy and Calibration within
your project, and click OK to import.

Exporting Calibrations

1 Select File > Export > Calibration > Selected Item or All Items.

2 The Export Calibration dialog appears. Select the format you want to
export to:

e ATI Vision

ATI Vision MAT file
INCA DCM file
Simple CSV file
Simple MAT file

e Simple M file
Click OK.

3 If you select ATI Vision, the ATI Vision Connection Manager dialog
appears, as for importing calibrations.

If you select a file format, a file browser appears. Choose a location and
filename and click Save.

If you choose All Items, all tables, normalizers, curves and constants in the
project are exported.

What you export when you choose Selected Item depends on which node is

highlighted:

® Selecting a Normalizer node outputs the values of the normalizer.

® Selecting a Table node outputs the values of the table and its normalizers.
¢ Selecting a Feature or Tradeoff node outputs the whole feature or tradeoff

(all tables, normalizers, curves and constants).

When exporting to an existing calibration file, the exported items replace the
existing items. (There is no merging of existing items and new exported items.)
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When exporting to Vision, the items in the CAGE project are matched by
name with the items in the Vision calibration and the values are replaced. It
is not possible to add new items to a Vision project by exporting from CAGE.
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Feature Calibrations

This section includes the following topics:

Performing Feature Calibrations
(p. 4-2)

Setting Up a Feature Calibration
(p. 4-5)

Calibrating the Normalizers (p. 4-15)

Calibrating the Tables (p. 4-28)

Calibrating the Feature Node
(p. 4-37)

Introduction to feature calibrations
and an overview of the processes
involved.

How to add a new feature, assign a
model, and set up your strategy and
tables.

How to calibrate the normalizers by
spacing the breakpoints. This covers
initializing, filling, and optimizing
breakpoints with reference to a
model.

How to initialize, fill, extrapolate
and optimize your table values with
reference to a model.

How to calibrate a whole feature
at once, rather than table by table,
using the Feature Fill Wizard.
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Performing Feature Calibrations

A ’feature’ calibration is the process of calibrating lookup tables and their
normalizers by comparing an ECU strategy (represented by a Simulink®
diagram) to a model.

The strategy is an algebraic collection of lookup tables. It is used to estimate
signals in the engine that cannot be measured and that are important for
engine control.

CAGE calibrates an electronic control unit (ECU) subsystem by directly
comparing it with a plant model of the same feature.

There are advantages to feature calibration compared with simply calibrating
using experimental data. Data is noisy (that is, there is measurement error)
and this can be smoothed by modeling; also models can make predictions for
areas where you have no data. This means you can calibrate more accurately
while reducing the time and effort required for gathering experimental data.

The basic procedure for performing feature calibrations is as follows:

1 Set up the variables and constants. (See “Setting Up Variable Items” on
page 2-3.)

2 Set up the model or models. (See “Setting Up Models” on page 2-11.)
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1. Set up the variables.
T / —rergramTToTEELEd And parsed
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2. Set up the models.

3 Set up the feature calibration. (See “Setting Up a Feature Calibration”
on page 4-5.)

4 Calibrate the normalizers. (See “Calibrating the Normalizers” on page
4-15.)

5 Calibrate the tables. (See “Calibrating the Tables” on page 4-28.)

6 Calibrate and view the entire feature. (See “Calibrating the Feature Node”
on page 4-37.)

7 Export the normalizers, tables, and features. (See “Importing and
Exporting Calibrations” on page 3-49.)
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7. Export the

calibration.
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calibration.
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5. Calibrate the tables.

F A(tiorm acay) + F SPR(Morm SPESPE))

— 4. Calibrate the normalizers.

The normalizers, tables, and features form a hierarchy of nodes, each with its
own view and toolbar. The feature view is shown.
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Setting Up a Feature Calibration

In this section...

“Procedure Overview” on page 4-5
“Adding a Feature” on page 4-7
“Assigning a Model” on page 4-7

“Setting Up Your Strategy” on page 4-7

Procedure Overview

A feature calibration is the process of calibrating lookup tables and their
normalizers by comparing a collection of lookup tables to a model. The
collection of lookup tables is determined by a strategy.

A feature refers to the object that contains the model and the collection of
lookup tables. For example, a simple feature for calibrating the lookup tables
for the maximum brake torque (MBT) consists of

¢ A model of MBT
® A strategy that adds the two following tables:
= A speed (N), load (L) table
= A table to account for the behavior of the air/fuel ratio (A)

Having already set up your variable items and models, you can follow the
procedure below to set up your feature calibration:

1 Add a feature. This is described in the next section, “Adding a Feature”
on page 4-7.

2 Assign a model. This is described in “Assigning a Model” on page 4-7.

3 Set up your strategy. This is described in “Setting Up Your Strategy” on
page 4-7.

4 Set up the tables. This is described in “Setting Up Tables” on page 3-3.
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This section describes steps 1, 2, and 3 in turn.

When you have completed these four steps, you are ready to calibrate the
normalizers, tables, and features.



Setting Up a Feature Calibration

Adding a Feature

A feature consists of a model and a collection of lookup tables, organized in a
strategy.

To add a feature to your session, select File -> New -> Feature. This
automatically switches you to the Feature view and adds an empty feature
to your session.

An incomplete feature is a feature that does not contain both an assigned
model and a strategy. If a feature is incomplete, it is displayed as¥- in the
tree display. If a feature is complete, it is displayed as¥- in the tree display.

Assigning a Model

Having already added a feature and a model to your session, you can assign a
model to your feature.

To assign a model to your feature,

1 Highlight the top feature node in the tree display.

2 Click Select Model to select the model you want to work with. A dialog
box appears.

3 Highlight the correct model to assign to your feature and click OK. You will
see the model name and inputs appear above the Select Model button.

Setting Up Your Strategy

A strategy is an algebraic collection of tables, and forms the structure of the
feature.

For example, a simple strategy to calibrate a feature for MBT adds two tables:

¢ A table ranging over the variables speed and load

® A table to account for the behavior of the model as the AFR varies

To evaluate the feature side by side with the model, you need to have a
strategy that takes some or all of the same variables as the model. The
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strategy is expressed using Simulink® diagrams. You can either import a
strategy or you can construct a strategy.

The following topics are described next:

¢ “Importing a Strategy” on page 4-8
® “Constructing a Strategy” on page 4-9
e “Exporting Strategies” on page 4-13

Importing a Strategy
To import a Simulink strategy,

1 Highlight the top feature node in the tree display.

2 Select File > Import > Strategy.

3 Select the appropriate .md1 file. CAGE checks the strategy for more than
one outport.

4 Select the outport that you want to use.

If there is more than one outport to your strategy, a Simulink window
opens. Double-click the correct blue outport to parse (or import) the
strategy to your feature.

If there is only one outport to your strategy, a dialog box opens.
¢ (Click Automatic to parse the strategy without viewing it.

¢ (Click Manual to edit the strategy. When you are finished editing
double-click the blue outport circle to parse the strategy to your feature.
The Simulink windows close and parse this strategy to your feature.

To view a representation of your strategy, select the Feature node. Your
strategy is represented in the Strategy pane. Select View > Full Strategy
Display to switch between the full description and the simplified expression.
You can select and copy the strategy equation to the clipboard.

For information about using Simulink to amend strategies, see “Constructing
a Strategy” on page 4-9.
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Example. In the matlab\toolbox\mbc\mbctraining directory, there is a
Simulink diagram called tutorial.mdl. If you import this and click Manual
in the dialog box, you see the following diagram.
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Double-click the Torque-0Output outport to parse the strategy into the
Strategy pane.

Constructing a Strategy

For you to perform a feature calibration, the strategy and the model must
have some variables in common.

To construct a strategy using Simulink,
1 Highlight the correct feature by clicking the Feature node.

2 Select Feature > Graphical Strategy Editor or press Ctrl+E.

Three Simulink windows open:

¢ The strategy window for editing your strategy, like the following example.
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¢ A library window, cgeqlib, with all the blocks available for building
a strategy.
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® A library window with all the existing blocks in your session, organized

in libraries.
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3 In the strategy window, build your strategy using the blocks available in

the library windows.
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4 Double-click the blue outport circle to parse the strategy into the CAGE
session.

Note This closes all three Simulink windows and parses your strategy
into the feature.

About Feature Parsing

The library, cgeqlib contains all the blocks available for building a strategy,
as described in “Constructing a Strategy” on page 4-9. Tables in the current
CAGE session are shown in dark green. A black table block signifies that a
new table will be created in CAGE. If you copy a CAGE table block, a new
table is created and the block color changes to black to signify this.

Normalizers in the current CAGE session are shown in light blue. Normalizer
blocks must be inputs to tables. A black Normalizer block signifies that a new
normalizer will be created in CAGE. If you copy a CAGE table block a new
normalizer is created and the block color changes to black to signify this.

Some rules for feature parsing:

® You can create 1D tables with or without normalizers. If you add a Function
block with no normalizer, a 1D lookup table with an internal normalizer
is created on parsing. If the Function block has a normalizer as its input,
then you can use shared normalizers (from the list of available normalizers
in CAGE). After creation you cannot change from using shared normalizers
to internal normalizers. You must set normalizer size and values using the
Calibration Manager, after parsing the strategy.

e 2D lookup tables always have shared normalizers. If the input to the Table
block is not a normalizer, then a normalizer is created when the strategy is
parsed.

¢ If you change the name of inports, table or normalizer blocks for blocks
associated with existing CAGE items, then the CAGE item’s name is
changed. The name is unique for the current CAGE project (suffixes (“_1”)
are added if necessary to create a unique name).

¢ Prelookup tables must feed into an Interpolation block using a Prelookup
block.
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® Constant values are read in from the block.

¢ Only scalar inputs are supported with the exception of the Fen block.
The function block accepts multiple inputs as inputs to the expression
(e.g., u(1)+u(2)).

If the parsing of the Simulink diagram fails, you see an error message in a
dialog box, and any renamed items or changed connections in the current
feature are restored. You can then correct the Simulink diagram and reparse
the diagram.

For more information about using Simulink to build your strategy, see
Simulink Help.

Exporting Strategies
Simulink strategies can be exported. For example, you might want to

¢ Include a strategy in a Simulink vehicle model

¢ Compile the strategy using Real-Time Workshop® software to produce C
code

¢ Evaluate the strategy using Simulink
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To export a strategy from CAGE,

1 Highlight the Feature node that contains the strategy that you want to save.
2 Select File > Export > Strategy.

3 Assign a name for your strategy.

The strategy is saved as a Simulink model (.md1) file.

4-14
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Calibrating the Normalizers

In this section...

“Overview of Calibrating Normalizers” on page 4-15
“Initializing Breakpoints” on page 4-16

“Filling Breakpoints” on page 4-17

“Optimizing Breakpoints” on page 4-21

“Viewing the Normalizer Comparison Pane” on page 4-25

Overview of Calibrating Normalizers

Select a normalizer in the tree display. This displays the Normalizer view,
where you can calibrate the normalizers.

This section describes how you can use CAGE to space the breakpoints over
the range of the normalizers.

P

1. Initialize 2. Fill 3. Optimize

To space the breakpoints, either click the buttons on the toolbar or select from
the following options on the Normalizer menu:
¢ Initialize

This spaces the breakpoints evenly along the normalizer. For more
information, see “Initializing Breakpoints” on page 4-16.

¢ Fill

This spaces the breakpoints by reference to the model. For example, you
can place more breakpoints where the model curvature is greatest. For
more information, see “Filling Breakpoints” on page 4-17.
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¢ Optimize

This moves the breakpoints to minimize the least square error over the
range of the axis. For more information, see “Optimizing Breakpoints”
on page 4-21.

The next sections describe each of these in detail.

Note Fill and Optimize are only available when you are calibrating with
reference to a model, when you are performing Feature calibrations.

For more information about the Normalizer view controls, see “Normalizer
View” on page 3-35.

Initializing Breakpoints

Initializing the breakpoints places the breakpoints at even intervals along the
range of the variable defined for the normalizer. When you add a table and
specify the inputs in the Table Setup dialog, CAGE automatically initializes
the normalizers of the table by spacing the breakpoints evenly over the ranges
of the selected input variables. If you have edited breakpoints you can return
to even spacing by using the Initialize function.

To space the breakpoints evenly,

1 Clicklll on the toolbar or select Normalizer > Initialize.
2 In the dialog box, enter the range of values for the normalizer.

3 Click OK.

For example, for a torque table with two normalizers of engine speed and
load, you can evenly space the breakpoints of both normalizers over the range
500 rpm to 6500 rpm for speed and 0.1 to 1 for the relative air charge. To

do this, in the dialog box you enter 500 6500 for the speed normalizer, N, ,
and 0.1 1 for the load normalizer, L.
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Filling Breakpoints

Filling breakpoints spaces the breakpoints by reference to the model. For
example, one method places the majority of the breakpoints where the
curvature of the model is greatest. This option is only available when you
are performing Feature calibrations.

For example, a model of the spark angle that produces the maximum brake
torque (MBT) has the following inputs: engine speed N, relative air charge
L, and air/fuel ratio A. You can space the breakpoints for engine speed and
relative air charge over the range of these variables by referring to the model.

To space the breakpoints based on model curvature, perform the following
steps:

1 Click L= or select Normalizer > Fill.

The Breakpoint Fill Options dialog box opens.

<} Breakpoint Fill Dptions » 1Ol =l

E]:FiIIB P_Table ML
Fill methad: IShale.t’-‘n.veEuw 'I
Range L: W
Fange M: IW
N

|:F|ange: I 1117

Murnber of paoints: |2—

ak. | Cancel |

2 Choose the appropriate method to space your breakpoints, from the
drop-down menu in the dialog box.

The preceding example shows ShareAveCurv. For more information about
the methods for spacing the breakpoints, see “Filling Methods” on page
4-18.
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3 Enter the ranges of the values for the normalizers.
The preceding example shows Range N 500 6500, and Range L., 0.1 1.
4 Enter the ranges of the other model variables.

CAGE spaces the breakpoints by reference to the model. It does this at
selected points of the other model variables. The example shows 11 17 for
the Range of A and 2 for the Number of points. This takes two slices
through the model at A = 11 and A = 17. Each slice is a surface in N and L.
That is, MBT(N, L, 11) and MBT(N, L, 17).

CAGE computes the average value of these two surfaces to give an average
model MBT (N, L).

If you set Number of points to one, and specify a range, then the mean
of the range is chosen as the evaluation point.

5 Click OK.

Note If any of the breakpoints is locked, each group of unlocked
breakpoints is independently spaced according to the selected algorithm.

If you increase the number of slices through the model, you increase the
computing time required to calculate where to place the breakpoints.

Filling Methods
This section describes in detail the methods for spacing the breakpoints of
your normalizers in CAGE.
® For one-dimensional tables, the two fill methods are
= ReduceError
= ShareAveCurv
® For two-dimensional tables, the two fill methods are
= ShareAveCurv

= ShareCurvThenAve
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ReduceError
Spacing breakpoints using ReduceError uses a greedy algorithm:

1 CAGE locks two breakpoints at the extremities of the range of values.
2 Then CAGE interpolates the function between these two breakpoints.

3 CAGE calculates the maximum error between the model and the
interpolated function.

4 CAGE places a breakpoint where the error is maximum.
5 Steps 2, 3, and 4 are repeated.

6 The algorithm ends when CAGE locates all the breakpoints.

ShareAveCurv and ShareCurvThenAve

Consider calibrating the normalizers for speed, N, and relative air-charge, L,
in the preceding MBT model.

In both cases, CAGE approximates the MBT,,(IN, L) model, in this case using
a fine mesh.

The breakpoints of each normalizer are calibrated in turn. In this example,
these routines calibrate the normalizer in N first.

Spacing breakpoints using ShareAveCurv or ShareCurvThenAve calculates
the curvature, K, of the model MBT,,(N, L),

fine mesh
K= Y (MBT " (N.Ly""
i=1

as an approximation for

K J-EUEIEI 1.9
780

MBT " (N.L)|"“dN
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Both routines calculate the curvature for a number of slices of the model at
various values of L. For example, the figure shown has a number of slices of a
model at various values of L.

Model Slices at Various Values of L

Then

® ShareAveCurv averages the curvature over the range of L, then spaces the
breakpoints by placing the i breakpoint according to the following rule.

e ShareCurvThenAve places the it" breakpoint according to the rule, then

finds the average position of each breakpoint.

Rule for Placing Breakpoints. Ifj breakpoints need to be placed, the it
breakpoint, V,, is placed where the average curvature so far is

N, _
[ |MBT 4" (N.L)["%dN = ;:—::LLXK
50

Essentially this condition spaces out the breakpoints so that an equal amount
of curvature (in an appropriate metric) occurs in each breakpoint interval.
The breakpoint placement is optimal in the sense that the maximum error
between the lookup table estimate and the model decreases with the optimal
convergence rate of O(N2). This compares with an order of O(N-V2) for equally
spaced breakpoints.
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The theorem for determing the position of the unequally spaced breakpoints is
from the field of Approximation Theory — page 46 of the following reference:
de Boor, C., A Practical Guide to Splines, New York, Springer-Verlag, 1978.

Optimizing Breakpoints
Optimizing breakpoints alters the position of the table normalizers so that the
total square error between the model and the table is reduced.

This routine improves the fit between your strategy and your model. The
following illustration shows how the optimization of breakpoint positions can
reduce the difference between the model and the table. The breakpoints are
moved to reduce the peak error between breakpoints. In CAGE this happens
in two dimensions across a table.

The green shaded oreos show the error
between the interpoluted tuble volues
ond the model using the initiol

brenk points.

Torque

Optimizing the position of the
hrenkpoints cun greotly reduce the error
hetween the interpoloted toble volues
and the model.

Torque

Engine speed

To see the difference between optimizing breakpoints and optimizing table
values, compare with the illustration in “Optimizing Table Values” on page
4-30.

See “Filling Methods” on page 4-18 for details on how the optimal breakpoint
spacing is calculated.
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For an example of breakpoint optimization, say you have a model of the spark
angle that produces the MBT (maximum brake torque). The model has the
following inputs: engine speed, N, relative air charge, L, and air/fuel ratio,
A. You can optimize the breakpoints for N and L over the ranges of these
variables.

To optimize the breakpoints, perform the following steps:

1 Ensure that the optimization routine works over reasonable values for the
table by choosing one of these methods:
a Select Normalizer > Initialize.

b Select Normalizer > Fill .
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2 Click @ on the toolbar or select Normalizer > Optimize.

This opens the following dialog box.

<) Breakpoint Optimization O . _ Ol =|

EI:EI ptBF_Table_ML
BrL

—Hange: I n2 0.an
—Mumber of pointz: I 3B

=-M
—FRange: W
M umber of paintz: IS‘E—
B4

—Range: 143

M umber of paintz: I 1

" Feorder Deleted Breakpoints [

k. Cancel

3 Enter the ranges for the normalizers.
The example shows 0.2 0.811 for the Range of L, and 750 6500 for N.
4 Enter the appropriate number of grid points for the optimization.

This defines a grid over which the optimization works. In the preceding
example, the number of grid points is 36 for both L and N. This mesh is
combined using cubic splines to approximate the model.

5 Enter ranges and numbers of points for the other model variables.
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The example shows a Range of A of 14.3 and the Number of points is 1.

6 Decide whether or not to reorder deleted breakpoints, by clicking the radio
button.

If you choose to reorder deleted breakpoints, the optimization process
might redistribute them between other nondeleted breakpoints (if they are
more useful in a different position).

For information about deleting breakpoints, see “Editing Breakpoints”
on page 3-37.

7 Click OK.
CAGE calculates the table filled with the mesh at the current breakpoints.
Then CAGE calculates the total square error between the table values and

the mesh model.

The breakpoints are adjusted until this error is minimized, using nonlinear
least squares optimization (1sqnonlin).

When optimizing the breakpoints, it is worth noting the following:

® The default range for the normalizer variable is the range of the variable.

® The default value for all other model variables is the set point of the
variable.

® The default number of grid points is three times the number of breakpoints.

See Also

® Reference page for 1sqnonlin
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Viewing the Normalizer Comparison Pane

To view or hide the comparison pane, select View > Feature/Model
Comparison. Alternatively, click iu «, the “snapper point” at the bottom
of the normalizer display panes.

Plot type:  |Feature Chlue) & Maodel d

Festure and Model Inputs

afr

=pk

Errar Statistics for Graph

Mazimutn sbsolute error

hean square errar

Total sguare efrar

[ b i}
0.2to08, 20
1000 to 000, 20 paints
14375
25 =1
4875
11.36 Iz 0.z o
4543

The comparison pane displays a comparison between the following:

e A full factorial grid filled using these breakpoints
¢ The model

Note This is not a comparison between the current table values and the
model. To compare the current table values and the model, see “Comparing
the Strategy and the Model” on page 4-32.

To make full use of the comparison pane,

1 Adjust the ranges of the variables that are common to the model and table.

2 Adjust the values selected for any variables in the model that are not in
the selected table.
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The default for this is the set point of the variable, as specified in the
variable dictionary. For more information, see “Using Set Points in the
Variable Dictionary” on page 2-6.

3 Check the number of points at which the display is calculated.
4 Check the comparison between the table and the model.
Right-click the comparison graph to view the error display.

5 Check some of the error statistics for the comparison, and use the
comparison to locate where improvements can be made.

Error Display

The comparison pane can also be used to display the error between the model
and the ’generated table’ (grid filled using these breakpoints).

Error Display in the
Comparison Pane

L R
0oz -
0.ms
am

ooos 4§

e

To display the error, select one of the Error items from the Plot type
drop-down list.

This changes the graph to display the error between the model and the table
values at these breakpoints.
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You can display the error data in one of the following ways:
® Error (Table Model). This is the difference between the feature and
the model.
e Squared Error. This is the error squared.
® Absolute Error. This is the absolute value of the error.
® Relative Error. This is the error as a percentage of the value of the table.

e Absolute Relative Error (%). This is the absolute value of the relative
error.

See Also

¢ “Comparing the Strategy and the Model” on page 4-32
This describes the comparison made when a table node is selected in the
tree display.
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Calibrating the Tables

In this section...

“Overview of Calibrating Feature Tables” on page 4-28
“Initializing Table Values” on page 4-29

“Filling Table Values” on page 4-30

“Comparing the Strategy and the Model” on page 4-32

“Filling the Table by Extrapolation” on page 4-34

Overview of Calibrating Feature Tables
After you set up your session and your tables, you can calibrate your tables.

Highlight a table in the tree display to see the Table view. For more
information about the Table view, see “Editing Tables” on page 3-7.

In CAGE, a table is defined to be either a one-dimensional or a
two-dimensional lookup table. One-dimensional tables are sometimes known
as characteristic lines or functions. Two-dimensional tables are also known as
characteristic maps or tables.

Each lookup table has either one or two axes associated with it. These axes
are normalizers. See “About Normalizers” on page 3-33 for more information.

For example, a simple MBT feature has two tables:

* A two-dimensional table with speed and relative air charge as its
normalizer inputs

® A one-dimensional table with AFR as its normalizer input

Before you can calibrate your tables, you must calibrate your normalizers. For
information, see “Calibrating the Normalizers” on page 4-15.

This section describes how you can use CAGE to fill your lookup tables by
reference to a model.
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) . . E & F' |
To fill the table values, either click the buttons in the toolbar, ,

or select from the following options in the Table menu:

A

e Initialize Table

Sets each cell in the lookup table to a specified value. For information, see
“Initializing Table Values” on page 4-29.

¢ Fill Table

Fills and optimizes the table values by reference to the model. For
information, see “Filling Table Values” on page 4-30.

¢ Fill by Inversion

Fills the table by creating an inversion of another table. For information,
see “Inverting a Table” on page 3-42.

¢ Fill by Extrapolation

Fills the table values based on the cells specified in the extrapolation mask.
You can choose values in cells that you trust to define the extrapolation
mask and fill the rest of the table using only those cells for extrapolation.
For information, see “Filling the Table by Extrapolation” on page 4-34.

The next sections describe each of these toolbar options in detail. See the
“Table Menu” on page 3-13 for other menu options.

Initializing Table Values
Initializing table values sets the value of every cell in the selected table to a

constant. You can do this when you set up a table (see “Adding, Duplicating
and Deleting Tables” on page 3-4) or later.
To initialize the values of the table,

1 Click E or select Table > Initialize.

2 In the dialog box that appears, select the constant value that you want to
insert into each cell.

When initializing tables, you should think about your strategy. Filling with
zeros can cause a problem for some strategies using "modifier" tables. For
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example, your strategy might use several speed-load tables for different

values of AFR, or you might use an AFR table as a "modifier" to add to a
single speed-load table to adjust for the effects of different AFR levels on
your torque output.

Be careful not to initialize modifier tables with 0 if they are multipliers in
your strategy. In this case, solving results in trying to divide by zero. This
operation will fail. If your table is a modifier that is added to other tables,
you should initially fill it with zeros; if it is a modifier that multiplies other
tables, you should fill it with 1s.

Filling Table Values

To fill and optimize the table values by reference to the model,

e Click £ or select Table > Fill.

This opens the Feature Fill Wizard. You can fill multiple tables at once
using the wizard, and you can Fill from the top feature node or from
any table node in a feature. See “Feature Fill Wizard” on page 4-39 for
instructions.

Optimizing Table Values

The Feature Fill Wizard optimizes the table values to minimize the current
total square error between the feature values and the model.

This routine optimizes the fit between your strategy and your model. Using
Fill places values into your table. The optimization process shifts the cell
values up and down to minimize the overall error between the interpolation
between the model and the strategy.

This process is illustrated by the following example; the green shaded areas
show the error between the mesh model (evaluated at the number of grid
points you choose) and the table values.
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This shows the error
when filling the
table using
breakpoints.

Torque

This shows the reduced
error after optimizing
table values using input
values between

the breakpoints.

Torgue

Engine Speed

To see the difference between optimizing table values and optimizing the
positions of breakpoints, compare with the illustration in “Optimizing
Breakpoints” on page 4-21.

CAGE evaluates the model over the number of grid points specified in the
Feature Fill Wizard, then calculates the total square error between this mesh
model and the feature values. CAGE adjusts the table values until this error
is minimized, using 1sqnonlin if there are no gradient constraints, otherwise
fmincon is used with linear constraints to specify the gradient of the table

at each cell.

See Also.

¢ Reference page for 1sqnonlin

e “Calibrating the Tables” on page 4-28
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The ranges of the common variables

\

Comparing the Strategy and the Model

When you calibrate a strategy, or collection of tables, by reference to a model,
it is useful to compare the strategy and the model. The comparison pane
provides a graphical tool for investigating this, as shown in the following

example.

Note This is a comparison between the current strategy values and the
model, unlike the comparison pane from the normalizer node, which compares
the model and a full factorial grid filled using the breakpoints.

Number of points in the comparison display

Pliit type: IFeature [blue) & Model

Festure and Madel Inputs

flarme Wallue /
M \ | 500 to 6500, 20 paints
L - 01 ta 1, 20 points
2, 14.35
SPK, / | s

Error statistics

/

hiditnum error / 24 .45
hean soguare error / 9.961
Total =guare error 3984

Variables in the model,

not in the table
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To make full use of the comparison-of-results pane,

1 Check the ranges of the variables that are common to the model and table.
For each variable check the number of points at which the display is
calculated. Double-click to edit any variable range or number of points.

2 Check the values selected for any variables in the model that are not in the
selected table. The default for this is the set point of the variable’s range.
Double-click to edit.

3 Check the comparison between the table and the model. You can rotate
this comparison by clicking and dragging, so that you can view all parts of
the comparison easily.

4 Use the Plot Type drop-down menu to display the error statistics for the
comparison.

Error Display

The comparison-of-results pane can also be used to display the error between
the model and the strategy.
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To display the error, select one of the Error options from the Plot Type
drop-down menu. This changes the graph to display the error between the
model and the strategy.

You can display the error data in one of the following ways:

® Error (Feature-Model). This is the difference between the feature and
the model.

e Squared Error. This is the error squared.

® Absolute Error. This is the absolute value of the error.

® Relative Error (%). This is the error as a percentage of the value of
the model.

e Absolute Relative Error (%). This is the absolute value of the relative
error.

When you have completed a calibration, you can export your feature. For
information, see “Exporting Calibrations” on page 3-51.

Filling the Table by Extrapolation

Filling a table by extrapolation fills the table with values based on the
values already placed in the extrapolation mask. The extrapolation mask is
described below. You can also choose to extrapolate automatically after filling
cells in the mask in the “Feature Fill Wizard” on page 4-39.

To fill a table by extrapolating over a preselected mask, click ““ or select
Table > Extrapolate .

This extrapolation does one of the following:
¢ [fthe extrapolation mask has only one value, all the cell values change to

the value of the cell in the mask.

¢ Ifthe extrapolation mask has two or more colinear values, the cell values
change to create a plane parallel to the line of values in the mask.

¢ Ifthe extrapolation mask has three or more coplanar values, the cell values
change to create that plane.
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o If the extrapolation mask has four or more ordered cells (in a grid), the
extrapolation routine fills the cells by a grid extrapolation.

o If the extrapolation mask has four or more unordered (scattered) cells,
the extrapolation routine fills the cell values using a thin plate spline
interpolant (a type of radial basis function).
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Using the Extrapolation Mask

The extrapolation mask defines a set of cells that form the basis of any
extrapolation.

For example, a speed-load (or relative air charge) table has values in the
following ranges that you consider to be accurate:

® Speed 3000 to 5000 rpm
* Load 0.4 to 0.6

You can define an extrapolation mask to include all the cells in these ranges.
You can then fill the rest of your table based on these values.

To add or remove a cell from the extrapolation mask,

1 Right-click the table.

2 Select Add To Extrapolation Mask or Remove From Extrapolation
Mask from the menu.

Cells included in the extrapolation mask are colored yellow.

Creating a Mask from the Boundary Model or Predicted Error
You can automatically generate an extrapolation mask based on the boundary
model or prediction error. Prediction error (PE) is the standard deviation of
the error between the model and the data used to create the model.

To generate a mask automatically,

1 Select Table > Extrapolation Mask > Generate From Boundary
Model or Generate From PE

2 If you select PE, a dialog appears where you must set the PE threshold to
apply, and click OK.

The cells in the table either within the boundary model or where the
prediction error is within the threshold now form the extrapolation mask,
and thus are colored yellow.
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Calibrating the Feature Node

In this section...

“How to Calibrate the Feature” on page 4-37
“Initializing the Feature” on page 4-37
“Feature Fill Wizard” on page 4-39

“Feature View” on page 4-46

“Feature Menu” on page 4-47

How to Calibrate the Feature

Selecting a Feature node displays the Feature view. For more information
about the Feature view, see “Feature View” on page 4-46.

The Feature view enables you to calibrate the entire feature, that is, fill all
the table values by referring to a model.

—
To calibrate the feature, either click the buttons on the toolbar, 3 , or
select from the following options on the Feature menu described in the
following sections: “Initializing the Feature” on page 4-37 and “Feature Fill

Wizard” on page 4-39.

Initializing the Feature

For example, a simple feature for maximum brake torque (MBT) consists of
the following tables:

* A speed (N), load (L) table

® A table to account for the behavior of air/fuel ratio (A)

Initializing this feature sets the values of the normalizers for speed, load,
and AFR over the range of each variable and put specified values into each
cell of the two tables.

A table that is already initialized provides a useful starting point for a more
detailed calibration.
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To initialize the feature, perform the following steps:

1 Click = . This opens the Feature Initialization Options dialog box, as
shown.

<) Feature Initialization Dption I ] A
E;Initialize MHew_Feature

H—]—Bleakpoints of Table_ML

H—]—Bleakpnints of Mom_L

|—Bleak|:ucuint 1ange: I o2 08N

[=1-Breakpaints of Marm_N

I—Breakpninl 1ange: I R0 6500

'—Enahle

=" alues of Table ML

—Initial walue:

TIE‘ <

—Enable

[=-Breakpoints of Fr_a

Breakpoints of Horm_d,
|—Bleak|:ucuint 1ange: 11 176

Enable v

[=-Yalues of Fri_&

tlnitial value; I ]

Enable v

2 Enter the ranges for the breakpoints in your normalizers. In the preceding
example, these are the breakpoint ranges:

* L. has range 0.2 0.811.
® N has range 750 6500.
® A has range 11 17.6.

3 Enter the initial table value for each cell in each table. Above, the cell
values are
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e Table NL has initial value 0.

e Fn_A has initial value 0.

4 Click OK to initialize the feature.

Note The default values in this dialog box are taken from the variable
dictionary. If you clear any Enable box, the associated table or normalizer
is left unchanged.

Feature Fill Wizard

Use the Feature Fill Wizard to fill and optimize the values in tables by
reference to the model. You can fill multiple tables at once using the wizard,
and you can Fill from the top feature node or from any table node in a feature.

Note you could also optimize the breakpoints for the normalizers before
using the Feature Fill Wizard. (See “Filling Breakpoints” on page 4-17 and
“Optimizing Breakpoints” on page 4-21.)

This section describes how to use the Feature Fill Wizard. For a detailed
description about the filling processes, see “Filling Table Values” on page 4-30.

To fill feature tables, perform the following steps:
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1 Click = . This opens the Feature Fill Wizard.

) Feature Fill Wizard ] =]
Choose Tables to fill

Chooze the tables you want to fill, and set options on howe each table should be filled.
Select tables:

T ahle | Clear b azk | E strapolate | T able Bounds | Gradient Bounds |

T es Tes [-Inf Inf] [-Inf Ink-Inf Inf]

Orz Yes Yes [-Inf 1rf] [-Inf 1nf]

OrTz es Tes [-Inf Inf] [-ef ]
[ Clear Mask [+ Extrapolate
Takle Bounds: I:Inf Inf
Gradient Bouncs: i Inf i Inf

Cancel = Back Firizky

Screen 1: Select tables to fill.

Select the check boxes of the tables you want to fill. For each table you

can set the following options:

¢ Clear Mask — select this check box to clear any table mask and fill all
unlocked table cells (locked cells are never altered). Clear this check
box to fill unlocked cells in the current extrapolation mask only, or all

unlocked cells if there is no mask.

¢ Extrapolate — select this to extrapolate across the whole table after
filling cells. The extrapolation is based on the filled cells in the mask

and any locked cells.

* Table Bounds — enter values here to set bounds on the table values

¢ Gradient Bounds — enter values here to set bounds on the gradient
(slope) between rows (left edit box) and between columns (right edit box).
For example, entering 0 Inf in the left edit box imposes the constraint
that the gradient must be positive (increasing) between successive rows.

When you have selected filling options for each table, click Next.
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2 Choose models and links.

/) Feature Fill Wizard =10l x|
Choose Models and links
et the model to fill the tables from and optionally set a constraint model and link inputs to other tems from the project.

adel: MET Select Model... |

Caonztraint: <nohes=

Select Cons‘fraim...l Deselect Constraint

“ariables: Links:
“ariahle Linked to Lirk | Mame Type ¢

i 101 Table -
L Urlink | g iewe 20 Table Table
ExH LETO todsl
INT -\ EXTEMP Model
Exhaust_On A MET todsl
Intake_0r i py Table

B rCam Table

_A RADT Domimslmun LEEwIEN] LI

Cancel | = Back | i

¢ (Click Select Model to choose a model to fill the tables from. The feature
filler adjusts the table cells so that the value of the feature across the
range of inputs best matches the value of this model.

¢ (Click Select Constraint to choose a constraint to use in the filling
process. You can use Linear, 1-D table, 2-D table, ellipsoid and model
constraints (see “Edit Constraint” on page 6-41). The feature filler
limits its activity to within this constraint, for example, the boundary
constraint of a model. While boundary models are often used as model
constraints in this setting you can use any model. For example, you
can use a function that returns a logical output (true for valid, false for
invalid) by setting up the model constraint >=0.5.

¢ (Click Link to associate a model, feature or table (selected on the right
side) with a variable (selected on the left side). Linking replaces the
variable inputs to any relevant models and features with the linked item.
This enables useful operations such as feeding a table into a model, for
example, an optimal cam schedule into a torque model, without needing

4-41



4 reature Calibrations

4-42

to make a separate function model. Click Unlink to disassociate any

pair.
Click Next.

3 Set variable values.

By default the table’s normalizer breakpoints and the set points of other
variables are selected, so the number of grid points is the number of table
cells. To increase the grid size you can enter more points for variables by
editing the Value fields, or you can interleave values between breakpoints
(see below). Increasing the number of grid points increases the quality of
the approximation and minimizes interpolation error, but also increases
the computation time.

) rentre rwaard

Set Variable Values
et the values you want to use to optimize over.

Use "Intialize from Mormalizer..." to use breakpoints of normalizers as a variable's value.

=0l x|

Matne Yalue
Wl 500: 466 GEEE: 5000 o
L 0.1:0.1:1 Lo
Exhaust_On 1 L
Irtake_On 1 L
Initiglize from Marmalizer ... |
Cancel = Back Finizh |

® You can edit normalizers manually, or you can click the Initialize

From Normalizer button to reach a dialog box where you can select
normalizers and interleave values between breakpoints. Interleaving
values can minimize interpolation error by adding values between each
normalizer value. In this way you can create a grid of more points than
table cells to optimize over. Select normalizers in the dialog box to use
those breakpoints as a variable’s value.
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In this dialog box, you can enter a value in the Number of values
between breakpoints edit box to add values between breakpoints.

By default, the feature filler compares the feature and model at the
table breakpoints. Choose a positive value to compare the feature and
model on a finer grid. A positive value further enhances the comparison
between feature and model to account also for errors introduced by linear
interpolation in the table (see “Optimizing Table Values” on page 4-30).
A value of 1 inserts one grid point between each pair of breakpoints, and
so on. Click OK to return to the Feature Fill Wizard.

¢ Edit set point values in the Value fields to optimize over a range rather
than at a single point. If you choose a range of values the table will be
filled using the average model value at each cell. For example, if you
enter -5:5:50 for the variable spark, the optimization of table values will
be carried out at values of spark between -5 and 50 in steps of 5 degrees.

Click Next.
Fill Tables. Click Fill Tables to fill the tables.

CAGE evaluates the model over the number of grid points specified, then
calculates the total square error between this mesh model and the feature
values. CAGE adjusts the table values until this error is minimized, using
1sgnonlin if there are no gradient constraints, otherwise fmincon is used
with linear constraints to specify the gradient of the table at each cell.

The graph shows the change in RMSE as the optimization progresses.
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<) Feature Fill Wizard | =10l x|

Fill Tables
Press 'Fill Tables'to fill the tables based on the settings on the previous panes.

Talerance: e-006

Smoathing: b—
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Fill Tahles
] Stop [~ Festure model
[~ Fill model with links
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[ Plot errar
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[~ Surface error

20

Cancel = Back [est = Finish

® You can enter a value in the Smoothing edit box to apply a smoothing
penalty to the optimization. The Smoothness penalty uses the second
derivative to avoid steep jumps between adjacent table values. There
is a penalty as smoothing trades smoother tables for increased error.
Enter a smoothing factor (0—Inf) and click Fill Tables to observe the
difference in the resulting RMSE and the table shape. Keep increasing
the value until you reach the required smoothness. If you go too far the
results will be a flat plane.

¢ Select the Create dataset check box to create a dataset containing the
output values at each specified grid point.

¢ Select the Feature model check box to create a feature model (on
finishing the feature fill wizard) that is a static snapshot of the feature
with its links included inside the feature model. If these links are
features then the link is bundled up within the feature model of the
feature being filled.

¢ Select the Fill model with links check box to create a model (on
finishing the feature fill wizard) that is a static snapshot of the fill model
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with its links connected to the model inputs (visible in the Connections
diagram, in the Models view).

® Select the remaining check boxes to display plots when you close the
Wizard. You can see plots of error against all the variables (Plot), error
between feature and model (Error), table surface and error surface.

You can click Back to return to previous screens and fill more tables, or you
can click Finish. When you click Finish to dismiss the wizard, the plots
with selected check boxes appear.

When you have completed a calibration, you can export your feature. For
information, see “Importing and Exporting Calibrations” on page 3-49.
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Feature View

As you select a Feature node you see the Feature view, shown. This section
describes the Feature view and the Feature menu options.

Selected feature

1. The strategy for the
selected feature

2. The model associated with
the selected feature

_ (O] x|
File Edit Wiew Feature \ Tools ‘Window Help '!
DS HE|X|@eh” Lo
Processes Feature | Stratecy: Inputs: L, A& SPK

New Feature = T(1orm M) Mofm LiLy) +
B F_A(orm As)) + F_SPR(Horm | 5PESPK))
(AN
AU
Tradeoff /
ﬁ‘i’ fodel: tg, Inputs: ML, &, SPR
ALy Select Model... | De=elect I‘-.-1u::de||
Optimization
Festure History
n- Comment f Action i
Strategy equation diagram created and parsed
Data Chiects Retnove
.
— 11 g

3. Feature History pane

The parts of the Feature view include

1 The strategy for the selected feature. This is the algebraic collection of the
tables that you are using to calibrate the selected feature.
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2 The model associated with the selected feature.

3 The Feature History pane, which displays the history of the feature.

Feature Menu
The Feature menu has the following options:

Select Model

Use this to select the correct model for your feature.
Deselect Model

Use this to clear the current model from your feature.
Convert to Model

Takes the current feature and converts it to a model, which you can view by
clicking the Model button.

Graphical Strategy Editor

Opens your current strategy for editing. For more information, see “Setting
Up Your Strategy” on page 4-7.

Parse Strategy Diagram

Performs the same function as double-clicking the blue outport of your
strategy diagram. For more information, see “Setting Up Your Strategy”
on page 4-7.

Clear Strategy
Clears the current strategy from your feature.
Initialize

Initializes the feature; also in the toolbar. See “Initializing the Feature” on
page 4-37 for details.
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¢ Fill

Fills and optimizes the feature; also in the toolbar. See “Feature Fill
Wizard” on page 4-39 for details.
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Tradeoff Calibrations

This section includes the following topics:

Performing a Tradeoff Calibration
(p. 5-2)

Setting Up a Tradeoff Calibration
(p. 5-5)

Calibrating Tables in a Tradeoff
Calibration (p. 5-11)

Using Regions (p. 5-22)

Multimodel Tradeoffs (p. 5-25)

Automated Tradeoff (p. 5-32)

An overview of the steps required for
tradeoff calibration.

How to set up a new tradeoff, add
tables, and display models.

An overview of how to calibrate
tables in a tradeoff calibration;
setting values for other variables
and determining suitable values at
specific operating points.

How to use regions to fill specific
parts of your table by extrapolation.

How to set up and use multimodel
tradeoffs.

How to use optimizations to
automate tradeoff calibrations.
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Performing a Tradeoff Calibration

N
AL

5-2

Tradeaff

A tradeoff calibration is the process of calibrating lookup tables by adjusting
the control variables to result in table values that achieve some desired aim.

For example, you might want to set the spark angle and the air/fuel ratio
(AFR) to achieve the following objectives:

® Maximize torque

® Restrict CO emissions

The data in the tradeoff is presented in such a way as to aid the calibrator
in making the correct choices. For example, sometimes the model is such

that only a slight reduction in torque results in a dramatic reduction in CO
emissions.

The basic procedure for performing tradeoff calibrations is as follows:

1 Set up the variables and constants. (See “Setting Up Variable Items” on
page 2-3.)

2 Set up the model or models. (See “Setting Up Models” on page 2-11.)

3 Set up the tradeoff calibration. (See “Setting Up a Tradeoff Calibration”
on page 5-5.)

4 Calibrate the tables. (See “Calibrating Tables in a Tradeoff Calibration” on
page 5-11.)

5 Export the normalizers, tables, and tradeoffs. (See “Exporting Calibrations”
on page 3-51.)

You can also use regions to enhance your calibration. (See “Using Regions”
on page 5-22.)
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See also

® “Automated Tradeoff” on page 5-32 is a guide to using the optimization
functionality in CAGE for tradeoffs.

The normalizers, tables, and tradeoff form a hierarchy of nodes, each with its
own view and toolbar.
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3. Set up the tradeoff calibration.
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Setting Up a Tradeoff Calibration

In this section...

“Overview of Setting Up a Tradeoff” on page 5-5
“Adding a Tradeoff” on page 5-6
“Adding Tables to a Tradeoff” on page 5-6

“Displaying Models in Tradeoff” on page 5-9

Overview of Setting Up a Tradeoff

A tradeoff calibration is the process of filling lookup tables by balancing
different objectives.

Typically there are many different and conflicting objectives. For example, a
calibrator might want to maximize torque while restricting nitrogen oxides
(NOX) emissions. It is not possible to achieve maximum torque and minimum
NOX together, but it is possible to trade off a slight reduction in torque for

a reduction of NOX emissions. Thus, a calibrator chooses the values of the
input variables that produce this slight loss in torque instead of the values
that produce the maximum value of torque.

A tradeoff also refers to the object that contains the models and tables. Thus,
a simple tradeoff can involve balancing the torque output while restricting
NOX emissions.

After you set up your variable items and models, you can follow the procedure
below to set up your tradeoff calibration:

1 Add a tradeoff. This is described in the next section, “Adding a Tradeoff”
on page 5-6.

2 Add tables to the tradeoff. This is described in “Adding Tables to a
Tradeoff” on page 5-6.

3 Display the models. This is described in “Displaying Models in Tradeoff”
on page 5-9.

This section describes steps 1, 2, and 3 in turn.
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When you finish these steps, you are ready to calibrate the tables.

Adding a Tradeoff

To add a tradeoff to your session, select File > New > Tradeoff. This
automatically switches you to the Tradeoff view and adds an empty tradeoff
to your session.

An incomplete tradeoff is a tradeoff that does not contain any tables. If a
tradeoff is incomplete, it is displayed as ot in the tree display. If a tradeoff is
complete, it is displayed as 9% in the tree display.

After you add a tradeoff you must add tables to your tradeoff.

Adding Tables to a Tradeoff

1 Add a table by selecting Tradeoff -> Add New Table or click E in the
toolbar. You can also add existing tables from your CAGE session; see
“Adding Existing Tables” on page 5-9.

Note that you must select the top tradeoff node in the tree display to use
the Tradeoff menu. This is automatically selected if your tradeoff has no
tables yet (it is the only node). You must also add at least three variables
(in the variable dictionary) to your project before you can add a table,
because CAGE needs a variable to fill the table and two more variables to
define each of the two normalizers.
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A dialog box opens.

JRI=IE

Matne: INew_QD_Table

Riowes:

N it I L I
Columns: I M I

I 10 3:

| 10 E|:

Initial walue: I ] 3:
Ok I

¥ input:

-

b
Select... |
Clear |

Cancel | Helg |

Fill tafale sneith:

2 Enter the name for the table.

If your tradeoff already contains one or more tables, when you add
additional tables they must be the same size and have the same inputs
(and therefore have the same normalizers). So if your tradeoff has existing
tables, you can only enter the new table name and the initial value.

For the first table in a tradeoff, you must set the normalizer inputs and
sizes:

a Edit the names for the X and Y normalizer inputs (the first two variables
in the current variable dictionary are automatically selected here).

b Enter sizes for each of the normalizers (Y input = rows, X input = columns)

3 Enter an initial value to fill the table cells, or leave this at zero.
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4 Click Select to choose a filling item for a table. A dialog opens where you
can select from the models and variables in your session.

+} Select Filling Item x|

Select the item you weant to fill takle with:

|tem | Type |
XN Y ariable
x L " ariable
XA Y ariable
x 5PK " ariable
X E Y ariable
A TO_Madel MEC madel
4\ HOFLOW_Model MEC model
— List options
™ Display models
" Display variahles
{* Display all tems
[ Cnly show items thet are nat filing anather table

QK I Cancel

a Depending on what kind of input you want, click the radio buttons to
display models or variables or both. You can choose to also show items
that are filling another table by clearing the check box.

b Select the filling item for the table and click OK.

5 Click OK to dismiss the Table Setup dialog and create the new table.

CAGE adds a table node to the tradeoff tree. Note you can still change the
input for the table as follows. Double-click the new table in the list under
Tables In Tradeoff, or click to select the table (it is selected automatically
if it is the only table in the tradeoff) and then click Change Filling Item

o &
(ﬂ) in the toolbar. This is also in the Tradeoff menu and the right-click
context menu.

The Select Filling Item dialog appears where you can select inputs to fill
the table, as described above.
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6 Repeat this procedure for each new table you want to add. Each additional
table in the tradeoff must have the same normalizers as the first table, so
you do not have to select normalizer inputs and sizes repeatedly. For each
new table you only have to enter the name and initial value.

Adding Existing Tables

1 Add a table by selecting Tradeoff > Add Existing Tables or click @ in
the toolbar.

A dialog appears where you can select from a list of tables in the current
session.

2 Select a table and click OK. It may be helpful to first select the check box to
only show suitable tables that can be added to the tradeoff.

Displaying Models in Tradeoff
To display models when viewing tables in the tradeoff display,

1 Highlight the tradeoff node in the tree.
2 From the Available Models list, select the one you want to display.

Models that are filling a table are automatically displayed.

3 Click ﬂ Add Model to Display List in the toolbar or LI in the Additional
Display Models pane to move the selected model into the Display
Models pane. To quickly add all available models to the display list, click
the display button repeatedly and each successive model will be added.
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4 Repeat steps 2 and 3 to add all the models you want to the display list.

Additional Dizplay Models

Awailable Models | Tupe | Dizplay Modelz | Tupe
ﬂ TO_ModelM, L, A, SPK,E) FMBC madel

A\ NOHFLOW _ModelN, L, &, SP... MBC model

- E

Removing a Model

1 In the Display Models list, select the model that you want to remove.

2 Click ﬁ in the toolbar, or LI in the Display Models pane, to move the
selected model into the Available Models pane.

3 Repeat until you have cleared all the appropriate models.
Once you have displayed all the models that you want to work with, you are

ready to calibrate your tables.
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Calibrating Tables in a Tradeoff Calibration

In this section...

“Procedure For Calibrating Tradeoff Tables” on page 5-11
“Setting Values of Other Variables” on page 5-14

“Determining a Value at a Specific Operating Point” on page 5-16
“Tradeoff Table Menus” on page 5-18

Procedure For Calibrating Tradeoff Tables

Selecting a table node in the tree display enables you to view the models that
you have displayed and calibrate that table.

To calibrate the tables,
1 Select the table that you want to calibrate.
2 Highlight one operating point from the table.
3 Set the values for other input variables.
For information, see “Setting Values of Other Variables” on page 5-14.
4 Determine the value of the desired operating point.

For instructions, see “Determining a Value at a Specific Operating Point”
on page 5-16.

5 Click @ to apply this value to the lookup table.
This automatically adds the point to the extrapolation mask.

6 Repeat steps 2, 3, 4, and 5 at various operating points.

7 Extrapolate to fill the table by clicking b in the toolbar.

For information, see “Filling the Table by Extrapolation” on page 4-34.
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8 You can also edit table cell values manually by typing values, or right-click
to Copy or Paste values.

After you complete all these steps you can export your calibration. For
information, see “Exporting Calibrations” on page 3-51.

Notice that the graphs colored green indicate how the highlighted table will
be filled:

o If a row of graphs is highlighted, the table is being filled by the indicated
model evaluation (the value shown at the left of the row).

o Ifthe column of graphs is green, the table is being filled by the indicated
input variable (shown in the edit box below the column).
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1. Select the table.

2. Select the operating point in the
table that you want to calibrate.

the table by extrapolation.

— 5. Repeat this process over a number
of operating points in the table, then fill
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4. Determine a suitable value for the point.

3. Set the values for other input variables.
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The next sections describe the following in detail:

® “Setting Values of Other Variables” on page 5-14

® “Determining a Value at a Specific Operating Point” on page 5-16

Setting Values of Other Variables

Typically the models that you use to perform a tradeoff calibration have many
inputs. When calibrating a table of just one input, you need to set values
for the other inputs.
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Setting Values for Individual Operating Points
To set values for inputs at individual operating points,

1 Highlight the operating point in the lookup table.

2 Use the edit boxes or drag the red bars to specify the values of the other
variables.

In the preceding example, the spark table is selected (the SPK graph is colored
green). You have to specify the values of AFR (A) and EGR (E) to be used,
for example:

1 Select the spark table node.

2 Click in the edit box for A and set its value to 14.3.

3 Click in the edit box for E and set its value to 0.

The default values are the set points of variables, which you can edit in the

Variable Dictionary.

Setting Values for All Operating Points
For example, if you are using a tradeoff to calibrate a table for spark angle,
you might want to set the initial values for tables of air/fuel ratio (AFR) and

exhaust gas recycling (EGR).

To set constant values for all the operating points of one table,

1 Highlight the table in the tree display.

2 Select one operating point in the table.

3 Enter the desired value of the cell.

4 Right-click and select Extrapolation Mask > Add Selection.

This adds the cell to the extrapolation mask.

A

5 Click 2] to extrapolate over the entire table.
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This fills the table with the value of the one cell.

Determining a Value at a Specific Operating Point
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Performing a tradeoff calibration necessarily involves the comparison of two
or more models. For example, in this case, the tradeoff allows a calibrator to
check that a value of spark that gives peak torque also gives an acceptable
value for the NOX flow model.

1 To select a value of an input, do one of the following:

® Drag the red line.

¢ Right-click a graph and select Find the minimum, maximum, or turning
point of the model as appropriate (also in the toolbar and Inputs menu).
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® (Click the edit box under the graph as shown above and enter the
required value.

2 Once you are satisfied with the value of your variable at this operating
point, you apply this value to the table by doing one of the following:

® Press Ctrl+T.
e Click B! (Apply Table Filling Values) in the toolbar.
¢ Select Tables > Apply > Fill to Table.

Right-Click Menu

Right-clicking a graph enables you to

¢ Find minimum of model output with respect to the input variable

¢ Find maximum of model output with respect to the input variable

¢ Find turning point of model with respect to the input variable
These first three options are also in the Inputs menu.

¢ Reset graph zooms (also in the View menu)

There are also toolbar buttons to find the minimum, maximum and turning
point of the selected model graph.

Using Zoom Controls on the Graphs
To zoom in on a particular region, shift-click or click with both mouse buttons
simultaneously and drag to define the region as a rectangle.

To zoom out to the original graph, double-click the selected graph, or use the
right-click Reset Graph Zooms option (also in the View menu).

Note Zooming on one graph adjusts other graphs to the same scale.
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Tradeoff Table Menus

View Menu
Selecting the View menu offers you the following options:

Table History

This opens the History display. For information, see “Using the History
Display” on page 3-17.

Configure Hidden Items

This opens a dialog box that allows you to show or hide models and input
variables. Select or clear the check boxes to display or hide items. This
is particularly useful if you are trading off a large number of models or
models that have a large number of factors.

Display Confidence Intervals

When you select this, the graphs display the 99% confidence limits for
the models.

Display Common Y Limits

Select this to toggle a common y-axis on and off for all the graphs. You can
also press CTRL+Y as a shortcut to turn common Y limits on and off.

Display Constraints

Select this to toggle constraint displays on and off. Regions outside
constraints are shown in yellow on the graphs, as elsewhere in the toolbox.

Graph Size

Select from the following options for number and size of graphs:
= Display All Graphs

= Small

= Medium

= Large

Large Graph Headers

Select this to toggle graph header size. The smaller size can be useful when
you need to display many models at once.
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* Reset Graph Zooms

Use this to reset if you have zoomed in on areas of interest on the graphs.
Zoom in by shift-clicking (or clicking both buttons) and dragging. You can
also reset the zooms by double-clicking, or by using the right-click context
menu on the graphs.

¢ Display Table Legend

Select this to toggle the table legend display on and off. You might want
more display space for table cells once you know what the legend means.
The table legend tells you how to interpret the table display:

= Cells with a tick contain saved values that you have applied from the
tradeoff graphs (using the ’Apply table filling values’ toolbar or menu
option).

= Yellow cells are in the extrapolation mask.
= Blue cells are in a region mask.

= Yellow and blue cells with rounded corners are both in a region and the
extrapolation mask.

= Cells with a padlock icon are locked.

Tables Menu

e Apply Fill to Table

Select this option to apply the values from the tradeoff graphs to the
selected table cell. This option is also in the toolbar, and you can use the
keyboard shortcut CTRL+T.

Note that the corresponding cell in all tables is filled with the appropriate
input, not just the cell in the currently displayed table. For example if you
have graphs for spark and EGR inputs, selecting Apply Fill to Table
fills the spark table cell with the spark value in the graphs, and the EGR
table cell with the EGR value.

e Extrapolation Mask — Also available in the toolbar and the context
menu (by right-clicking a table cell). Use these options to add and remove
cells from the mask for filling tables by extrapolation. Note that cells
filled by applying values from the tradeoff graphs (using the Apply
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Fill To Table toolbar and menu option) are automatically added to the
extrapolation mask.

= Add Selection
= Remove Selection
= Clear Mask

¢ Extrapolation Regions — Also available in the toolbar and the context
menu (by right-clicking a table cell). Use these options to add and remove
cells from regions. A region is an area that defines locally where to
extrapolate before globally extrapolating over the entire table. Use regions
to define high-priority areas for use when filling tables by extrapolation.
See “Using Regions” on page 5-22.

= Add Selection
= Remove Selection
= Clear Regions

e Extrapolate — This option (also in the toolbar) fills the table by
extrapolation using regions (to define locally where to extrapolate before
globally extrapolating) and the cells defined in the extrapolation mask.

¢ Extrapolate (Ignore Regions) — This option fills the table by
extrapolation only using cells in the extrapolation mask.

¢ Table Cell Locks — Also available in the context menu by right-clicking
a table cell. Use these options to lock or unlock cells; locked cells are not
changed by extrapolating.

= Lock Selection

= Unlock Selection
= Lock Entire Table
= Clear All Locks

Inputs Menu

¢ Reset to Last Saved Values — This option resets all the graph input
values to the last saved value. Also in the toolbar.
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* Set to Table Value — This option sets the appropriate input value on
the graphs to the value in the table.

The following three options are only enabled if a graph is selected (click to
select, and a blue frame appears around the selected graph). They are also
available in the right-click context menu on the graphs.

¢ Find Minimum of model vs input factor

¢ Find Maximum of model vs input factor

¢ Find Turning Point of model vs input factor

where model and input factor are the model and input factor displayed in
the currently selected graph, for example, TQ_model vs Spark.

¢ Automated Tradeoff — Use this option once you have set up an
optimization, to apply that optimization to the selected region of your
tradeoff table. See “Automated Tradeoff” on page 5-32 for information.

Tools Menu

¢ Calibration Manager — opens the Calibration Manager. See “Calibration
Manager” on page 3-21.

¢ Surface Viewer — Opens the Surface Viewer. See Chapter 8, “Surface
Viewer”.
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Using Regions

5-22

In this section...

“What Are Regions?” on page 5-22
“Defining a Region” on page 5-23
“Clearing a Region” on page 5-23

What Are Regions?

A region is an area that defines locally where to extrapolate before globally
extrapolating over the entire table.

For example, consider filling a large table that has twenty breakpoints for
each normalizer by extrapolation. Two problems arise:

® To have meaningful results, you need to set values at a large number of
operating points.

® To set values at a large number of operating points takes a long time.
To overcome this problem, you can
1 Define regions within the lookup table.

2 In each region, set the values of some operating points.

A

3 Click = to fill the table by extrapolation.



Using Regions

Each region is filled by extrapolation in turn. Then the rest of the table is filled
by extrapolation. The advantage of using regions is that you can have more
meaningful results by setting values for a smaller number of operating points.

Tahle: Spark Selected cell:
Filled bry: SPH L=0.5 r=25500
4500 =000 5500 i [=10u]n] E500
0.1 22459 23174 32343 ¥ 42022 44 455 -
02 2234 23.504 25482 ¥ 33414 35534
0.3 24 415 25454 27994 30.747 33.005
04 26154 2736 29.417 ¥ 3.826 33714
0.5 26593 25.097 29995 32.076% 33.939
0g 254879 27 559/% 275 3.183 33
o7 24757 26179 27795 29.571 .39
0.8 23115 24 266 27 524|% 29544
04 21 054 20.393 23716 25,605 27755 v|
T [

Cells are colored

¢ Yellow if they form part of the extrapolation mask

¢ Blue if they are part of a region

¢ Yellow and blue with rounded corners if they are part of the extrapolation
mask and part of a region

Defining a Region

1 Click and drag to highlight the rectangle of cells in your table.

2 To define the region, click = in the toolbar, or right-click and select
Extrapolation Regions > Add Selection, or select the menu option

Tables > Extrapolation Regions > Add Selection.
The cells in the region are colored blue.

Clearing a Region

1 Highlight the rectangle of cells in your table.
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2 To clear the region, click " in the toolbar, or right-click and select
Extrapolation Regions > Remove Selection, or select the menu option
Tables > Extrapolation Regions > Remove Selection.

You can clear all regions at once by selecting Clear Regions from the
Extrapolation Regions submenu.

5-24



Multimodel Tradeoffs

Multimodel Tradeoffs

In this section...

“What Is A Multimodel Tradeoff?” on page 5-25

“Adding a Multimodel Tradeoff” on page 5-26
“Calibrating Using a Multimodel Tradeoff” on page 5-29

What Is A Multimodel Tradeoff?

There are two types of tradeoff that you can add to your session, a tradeoff
of independent models, as described earlier (see “Performing a Tradeoff
Calibration” on page 5-2), or a tradeoff of interconnected models (a multimodel
tradeof?).

A multimodel tradeoff is a specially built collection of models from the Model
Browser.

You can build a series of models so that each operating point has a model
associated with it. In the Model Browser, you can export models for a
multimodel tradeoff from the test plan node. The models must be two-stage
and must have exactly two global inputs.

The procedure for calibrating by using a multimodel tradeoff follows:

1 Add the multimodel tradeoff. (See the following section, “Adding a
Multimodel Tradeoff” on page 5-26.)

2 Calibrate the tables. (See “Calibrating Using a Multimodel Tradeoff” on
page 5-29.)

3 Export your calibration. (See “Importing and Exporting Calibrations” on
page 3-49.)

The multimodel is only defined for certain cells in the tradeoff tables. These
are the operating points that were modeled using the Model Browser part

of the toolbox. These cells have model icons in the table. At each of these
operating points, you can use the model to trade off, and by doing this you can
adjust the value in the table. The multimodel is not defined for all other cells
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5-26

in the table and so you cannot use models to tradeoff. You can edit these cells
and they can be filled by extrapolation. You trade off values at each of the
model operating points in exactly the same way as when using independent
models, as described in “Determining a Value at a Specific Operating Point”
on page 5-16. When you have determined table values at each of the model

operating points, you can fill the whole table by extrapolation by clicking i .
See “Filling the Table by Extrapolation” on page 4-34.

Adding a Multimodel Tradeoff

To add a multimodel tradeoff to your session,

1 Select File > New > Tradeoff. CAGE switches to the tradeoff view and
creates a new empty tradeoff.

2 Select the new tradeoff in the tree, then select File
> Import > Multimodel Tradeoff.

The file must have been exported from the MBC Model Browser using the
Tradeoff button (only enabled for two-stage models with exactly two global
inputs). See “Multimodel Tradeoffs” on page 5-25.

3 Select the correct file to import and click Open. This opens a dialog box.



Multimodel Tradeoffs

) Import Multimodel Tradeoff File I ]

— Model setup — Tahle setup
Relative tolerances (% of range): K-gis input; ||_ - I
Y
M I 1 E‘ Mgz inpt: IN 'I
ry
L: I 01
E‘ Mutnker of tables to creste: 8 Select Tahles... |
Model sites:
i L Breckpoint seftings: (% Automatic ' Manual
V 803 .53 1298 = Takle collmms: I—‘ISE‘
7| &08383 2498 =
[ 1002 2002 Tiahle rows I g E‘
™ 1005 a0 I rortalizer: L rorinalizer:
[¥| 100302 39.98 It Cutput Infaut Output
V| 1s501.1m 14.02 805.106 0]= 12.98 0]~
o 1500 24 1003.5 1 14.02 1
v 1501 .83 36 1499 851 2 15.98 2
| 1437 872 50.02 19995 3 18 3
v 2035 15.98 LI 2035 4 LI 20.02 4 LI

Ok I Cancel | Help |

4 In the left Model sites list, you can clear the check boxes for any models at
operating points that you do not want to import.

Notice that the operating points are displayed graphically at the top. If an
operating point is deselected, it is displayed as gray here, rather than blue.

CAGE will create tables for all the models and input variables, with
breakpoints at all the model operating points. You can choose not to create
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all the tables; click Select Tables to choose from the list which tables
you want.

5 Choose the normalizers (axes) of the tables by using the X- and Y-axis
input drop-down menus.

6 You can adjust the number of breakpoints in the following ways:

¢ Leave the Automatic breakpoint settings radio button selected and edit
the relative tolerances around the model sites. Use the tolerance edit
boxes in the model setup pane. You can observe the effects of altering
the tolerances on the number of breakpoint dotted lines drawn on the
top graphic. Initially each model site has a breakpoint. If operating
points are close together, you can increase the tolerances to decrease
the number of breakpoints.

For example, if several close points may all have been intended to run
at exactly the same point, you might want to adjust the tolerances until
those model points (displayed as blue dots) only have one breakpoint
line. The number of rows and columns that will be created is displayed
in the edit boxes on the right.

¢ Alternatively you can select the Manual breakpoint settings radio
button and enter the number of rows and columns in the edit boxes, and
you can directly edit the values of the breakpoints.

7 Click OK.

When you click OK, CAGE creates all the tables for the multimodel tradeoff,
with breakpoints at the values you have selected.

Note When you calibrate the tables, you can only use models to tradeoff at
the operating points defined for the models. These cells have model icons
in the table. You can edit other cells, but they have no models to tradeoff
associated with them.

You can now calibrate your tables. See the next section, “Calibrating Using a
Multimodel Tradeoff” on page 5-29.
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Calibrating Using a Multimodel Tradeoff

Each editable operating point in your tables has a model icon in the cell,
like this example cell.

& 4602722

These cells have a model defined at that point. You use the display of these
models to help you trade off values at these points to fulfill your aims in
exactly the same way as when using independent models in "ordinary"
tradeoff mode, as described in “Determining a Value at a Specific Operating
Point” on page 5-16.

1 Change input values by dragging the red lines on the graphs or by typing
directly into the edit boxes above the graphs. Use the context menu, toolbar
or Inputs menu to find the maximum, minimum, or turning point of a
model if appropriate.

2 Look at the model evaluation values (to the left of each row of graphs)
and the input variable values (in the edit boxes below the graphs) to see if
they meet your requirements.

Remember that the green highlighted graphs indicate how the selected
table is filled: if a row is green, the model evaluation value (to the left) fills
the table at that operating point; if a column is green, the input variable
value (in the edit box below) fills the table.
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See the example following; the SPK column of graphs is green, so the value
of SPK in the edit box is entered in the table when you click the Apply

Table Filling Values button (@).

— Value of the TQ model
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— Value of the TQ model This column is green, so Value of spark

this value of SPK is entered
in the table when you select
Apply Fill to Table.

3 When you are satisfied with the tradeoff given by the value of your variable
at this operating point, you apply this value to the table by pressing Ctrl+T,

selecting Tables -> Apply Fill to Table, or clicking B in the toolbar.

4 When you have determined table values at each of the model operating

points, you can fill the whole table by extrapolation by clicking L See
“Filling the Table by Extrapolation” on page 4-34.
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You can then export your calibration; see “Importing and Exporting
Calibrations” on page 3-49. An example multimodel tradeoff is shown
following.
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Automated Tradeoff

5-32

In this section...

“Using Automated Tradeoff” on page 5-32

“What Are Appropriate Optimizations?” on page 5-34

Using Automated Tradeoff

You can use automated tradeoff to run an optimization routine and fill your
tradeoff tables. Once you have set up an optimization and a tradeoff, you can
run an automated tradeoff. As with any other tradeoff you need at least one
table. You can apply an optimization to a cell or region of a tradeoff table, or
the whole table, and the tradeoff values found are used to fill the selected cells.
If only filling selected cells you can then fill the entire table by extrapolation.

You must first set up an optimization to use automated tradeoff.

There is an example automated tradeoff in the optimization tutorial chapter,
“Tutorial: Optimization and Automated Tradeoff” in the Getting Started
documentation.

1 You need a CAGE session with some models and a tradeoff containing
some tables.

¢ See Chapter 5, “Tradeoff Calibrations” for instructions on setting up
a tradeoff. You could use the tradeoff tutorial to generate a suitable
example session.

You also need to set up an optimization before you can run an automated
tradeoff. Objectives and constraints must be set up.

® For an example work through the step-by-step tutorial to set up
some optimizations and then apply them to a tradeoff table. See
“Tutorial: Optimization and Automated Tradeoff” in the Getting Started
documentation.

2 Go to the tradeoff table you want to automate. You can select some table
cells to apply the optimization to, or use the whole table, or fill only
previously saved tradeoff points. Note that if you define a large region
with many cells or a whole table it can take a long time to complete the
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optimization. You can select individual cells, or click and drag to select

a rectangle of cells. The selected cells do not have to be adjacent. Try a
small region (say up to six cells) to begin with. Right-click selected cells
and select Extrapolation Regions -> Add Selection or use the toolbar
button (to add selection to extrapolation regions).

3 To apply optimization: click in the toolbar, or select Inputs ->
Automated Tradeoff.

® A dialog appears that allows an appropriate (defined below) optimization
to be selected from the current project.

Note You must set up an optimization to run before you can perform an
automated tradeoff. You do this in the Optimization view. See also
“Setting Up Point-by-Point Optimizations” on page 6-9.

The set of cells in the region you have selected becomes the operating point
set for the optimization. The cell/region breakpoint values are used to
replace the fixed variable values in the selected optimization. Note that the
existing fixed variable values are reset to their previous state at the end
of the automated tradeoff.

If previous tradeoff values have been applied to a cell, those values are
used for free variable initial values and non-table-axis fixed variables;
otherwise the set points are used.

4 The optimization is run as if you were clicking Run from the Optimization
view. See “Running Optimizations” on page 6-46.

Results are placed in the tradeoff object, that is, values for the tables
involving the free variables or values for the tables for constraint or
objective models. If the routine applied gives more than one solution, for
example, an NBI optimization, then a solution which tries to trade off all
objectives is placed in the tradeoff tables. Every cell in the defined region
is filled.

5 The cells of the region become part of the extrapolation mask (as if apply

point has been applied); so if you want you can then click Extrapolate in the
toolbar to fill the rest of the table from your optimized automated tradeoff.
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5-34
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What Are Appropriate Optimizations?
The list of all optimizations in the project is filtered. To be eligible for

selection,

¢ The optimization must be ready to run (toolbar button enabled).

e The variables in the axes of the tradeoff tables must not be free variables
in the optimization. For example, if one of the axes is speed, then speed
cannot be a free variable.

¢ The fixed variables must be a subset of the variables in the axes of the
tradeoff tables. For example, if the optimization requires variables Speed
and Load, then these must be the axes variables in the tradeoff table.

¢ The optimization must either have N runs with all variables of length 1, or
a single run with all variables of length N.

Multimodel Tradeoff

For a multimodel tradeoff, things work slightly differently. The multimodel is
only defined for certain cells in the tradeoff tables. These are the operating
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points that were modeled using the Model Browser part of the toolbox. Such
cells are marked with a model icon as shown in the example, and you should
select these for running the automated tradeoff. You can select any region,
but the optimization can only find values for the operating points defined by
the multimodel.
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Optimization

This section includes the following topics:

Using the Optimization View (p. 6-3)

Optimization Problems You Can
Solve with CAGE (p. 6-5)

Creating an Optimization (p. 6-8)

Defining Variable Values (p. 6-29)

Objectives and Constraints (p. 6-38)

Running Optimizations (p. 6-46)

Using the Optimization Parameters
Dialog Box (p. 6-48)

An introduction to setting up your
session for optimizations.

Examples of the optimization
problems that can be solved in
CAGE.

Instructions for setting up
point-by-point and sum
optimizations, how to use the
Optimization Wizard, and how to
configure your optimization for
distributed computing.

How to define a set of operating
points for the optimization. You
can define values manually, or
import from a data set or an existing
optimization output.

How to configure objectives and
constraints.

How to run optimizations, and
configure the Optimization
Parameters dialog box.
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Optimization Output Views (p. 6-63)

Using Optimization Output (p. 6-91)

Analyzing Point-by-Point
Optimization Output (p. 6-99)

Interpreting Sum Optimization
Output (p. 6-115)

User-Defined Optimization (p. 6-129)

Optimization Function Reference
(p. 6-136)

Functions — Alphabetical List
(p. 6-141)

Using the optimization output views
to investigate your results and select
your preferred solutions.

Using optimization results to fill
tables and export to data sets.

A process for analyzing
point-by-point optimization output,
with tips for improving results.

How to understand sum optimization
output.

An overview of the process of
customizing the optimization
template to use your own
optimization routines in CAGE.

Information on all the methods
available for writing your own
optimization functions.

Alphabetical list of optimization
functions



Using the Optimization View

Using the Optimization View

Optimization functionality is one of the CAGE processes. The Optimization
button can be found in the left Processes pane.

Processes

Festure

AN
AL

Tradeoff

“

Cptitmization

To reach the Optimization view, click the Optimization button.

Here you can set up and view optimizations. As with other CAGE processes,
the left Optimization pane shows a tree hierarchy of your optimizations,
and the right panes display details of the optimization selected in the tree.
When you first open the Optimization view both panes are blank until you
create an optimization.

As for other CAGE processes, you must set up your session for an optimization.
For any optimization, you need one or more models. You can run an
optimization at a single point, or you can supply a set of points to optimize.
The steps required are

1 Import a model or models.

2 Set up a new optimization.

Optimization functionality in CAGE is described in the following sections:

* “Optimization Problems You Can Solve with CAGE” on page 6-5
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The steps for setting up and running optimizations are described in these
sections:

= “Creating an Optimization” on page 6-8
o “Setting Up Point-by-Point Optimizations” on page 6-9
e “Setting Up Sum Optimizations” on page 6-17
= “Objectives and Constraints” on page 6-38
= “Running Optimizations” on page 6-46
= “Using the Optimization Parameters Dialog Box” on page 6-48

“Optimization Output Views” on page 6-63 describes using the views to
analyze your results.

After you set up an optimization, you can apply it to a region in a set of
tradeoff tables. See “Automated Tradeoff” on page 5-32.

You can define your own optimization functions for use in CAGE. See
“User-Defined Optimization” on page 6-129.

There are tutorial examples to guide you through the optimization
functionality. See “Tutorial: Optimization and Automated Tradeoff”,

and see the optimization sections in “Gasoline Engine Calibration Case
Study” and “Diesel Engine Calibration Case Study”, in the Getting Started
documentation.
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Optimization Problems You Can Solve with CAGE

In this section...

“Point-by-Point Optimization Problems” on page 6-5

“Sum Optimization Problems” on page 6-6

Point-by-Point Optimization Problems

CAGE provides a flexible optimization environment in which many
automotive optimization problems can be solved. These problems can be
divided into two main groups, point-by-point and sum problems. This section
describes point-by-point problems.

In a point-by-point problem, a single optimization run can determine optimal
control parameter values at a single operating point. To optimize control
parameters over a set of operating points, an optimization can be run for
each point.

Examples of point-by-point problems that CAGE can be used to solve are
described below:

¢ Find the optimal spark timing (SPK), intake valve timing (INTCAM) and
exhaust valve timing (EXHCAM) at each point of a lookup table whose axes
are engine speed (N) and relative load (L).

Optimized values of the control parameters are determined by running the
following optimization at each point of the lookup table:

Objective: Maximize engine torque, TQ = TQ(N, L, SPK, EXHCAM,
INTCAM)

Constraints:

= Residual fraction <= 17% at each (N, L) operating point

= Exhaust temperature <= 1290°C at each (N, L) operating point

= Engine to be operated inside the operating envelope of the engine

¢ Find the optimal mass of fuel injected (F), rail pressure (P), pilot timing
(PT) and main timing (MT) at each point of a lookup table whose axes are
engine speed (N) and engine torque (TQ).
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Optimized values of the control parameters are determined by running the
following optimization at each point of the lookup table:

Objective: Minimize brake specific fuel consumption, BSFC = BSFC(N, TQ)
Constraints:

= Engine out NOx <= 0.001 kg/s at each (N, TQ) operating point

= Engine out Soot emissions <= 0.0001 kg/s at each (N, TQ) operating point

® Find the optimum spark timing (SPK) and exhaust gas recirculation (EGR)
at each point of a set of operating points defined by engine speed (N),
engine load (L) pairs. Optimized values of SPK and EGR are determined by
running the following optimization at each point:

Objective: Maximize engine torque, TQ = TQ(N, L, SPK, EGR)

Constraints: Engine out NOx <= 400 g/hr at each (N, L) operating point
* For a new engine, find out the optimal torque versus NOx emissions

curve for this engine over the operating range of the engine. This is

a multi-objective optimization, and CAGE Optimization contains an
algorithm (NBI) to solve these problems.

For this example, the optimal torque-NOx curve is determined by solving
the following optimization problem for optimal settings of spark timing
(SPK) and exhaust gas recirculation (EGR):

Objectives:
= Maximize engine torque, TQ = TQ(N, L, SPK, EGR)
= Minimize engine out NOx = NOx(N, L, SPK, EGR)

To find out more about solving these types of problems in CAGE, see “Setting
Up Point-by-Point Optimizations” on page 6-9.

Sum Optimization Problems

In a sum optimization, a single optimization run can determine the optimal
value of control parameters at several operating points simultaneously. All
the control parameters for the operating points are optimized by calling
the algorithm once (there’s only one call to foptcon per run for a sum
optimization). This approach contrasts with a point-by-point optimization,
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which has to make a call to the algorithm for every point to find the optimal
settings of the control parameters.

¢ Find the optimal spark timing (SPK), intake valve timing (INTCAM) and
exhaust valve timing (EXHCAM) at each point of a look-up table whose
axes are engine speed (N) and relative load (L).

Optimized values of the control parameters are determined by running the
following optimization once:

Objective: Maximize weighted sum of engine torque, TQ = TQ(N, L, SPK,
EXHCAM, INTCAM) over the (N, L) points of a look-up table.

Constraints:
= Difference in INTCAM between adjacent cells is no greater than 5°.
= Difference in EXHCAM between adjacent cells is no greater than 10°.

At each table cell, residual fraction <= 17%

At each table cell, exhaust temperature <= 1290°C

* Find the optimal start of injection (SOI), basefuelmass (BFM), fuel pressure
(P), turbo position (TP) and lift of the EGR valve (EGR) at a set of mode
points defined by engine speed (N), engine torque (TQ) pairs.

Optimized values of the control parameters are determined by running the
following optimization once:

Objective: Maximize weighted sum of brake specific fuel consumption,
BSFC = BSFC(SOI, BFM, P, TP, EGR, N, TQ) over the (N, TQ) mode points.

Constraints:

= Weighted sum of brake specific NOx must be less than a legislated
maximum

= At each mode point, air fuel ratio must be greater than a specified
minimum

= At each mode point, turbo speed must not exceed a specified maximum

To find out more about solving these types of problems in CAGE, see “Setting
Up Sum Optimizations” on page 6-17.
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In this section...

“Overview of Creating Optimizations” on page 6-8
“Setting Up Point-by-Point Optimizations” on page 6-9
“Optimization Wizard” on page 6-9

“Optimization View Toolbar” on page 6-16

“Setting Up Sum Optimizations” on page 6-17
“Parallel Computing in Optimization” on page 6-26

Overview of Creating Optimizations
To create a new optimization, select File > New > Optimization.

This takes you to the Optimization Wizard, which leads you through the
steps of choosing the optimization to run, specifying the number of variables
to optimize over (unless this is predefined by the function), and linking the

variables referenced in the optimization to CAGE variables.

For guidance, see the following sections:

1 “Setting Up Point-by-Point Optimizations” on page 6-9 describes steps to
set up point-by-point optimizations with links to instructions.

2 “Optimization Wizard” on page 6-9. You use the Optimization Wizard
to create an optimization, including choosing your algorithm, algorithm
options, and free variables. You can set up objectives and constraints either
in the wizard or from the main Optimization view.

3 After using the Optimization Wizard, you can use the optimization toolbar
for common tasks for setting up optimizations. See “Optimization View
Toolbar” on page 6-16.

4 “Setting Up Sum Optimizations” on page 6-17 describes steps to set up
sum optimizations with links to instructions, including how to use the
Number of Values length controls.
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5 “Parallel Computing in Optimization” on page 6-26 describes how to set up
your optimization to use distributed computing for running.

Setting Up Point-by-Point Optimizations
Use the following process to set up a point-by-point optimization:

1 Use the “Optimization Wizard” on page 6-9 to create your optimization.

It is optional whether you set up your objectives in the wizard or later in
the Optimization view.

2 For simple model constraints it is optional whether you set them up in the
wizard or later in the Optimization view. To apply other types of constraints
(more flexible model constraints, linear, ellipsoid, 1-D table, 2-D table, and
range) you must use the Optimization view. See “Edit Constraint” on page
6-41 for details of all these constraints.

3 Set variable values for the points where you want the optimization to run.
See “Defining Variable Values” on page 6-29. You can enter values manually
or by importing from data sets or the output of existing optimizations.

4 Run the optimization. See “Running Optimizations” on page 6-46.
5 View the results. See “Optimization Output Views” on page 6-63.

Optimization Wizard

You use the Optimization Wizard to:

1 Choose algorithm

2 Set up free variables, objectives, and constraints options — “Optimization
Wizard Step 2” on page 6-11

3 Select free variables — “Optimization Wizard Step 3” on page 6-13
The last 3 steps you can do in the wizard or in the Optimization view:
4 Set up objectives — “Optimization Wizard Step 4” on page 6-14

5 Set up model constraints — “Optimization Wizard Step 5” on page 6-15
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6 Set up data sets (user-defined optimizations only) — “Optimization Wizard
Step 6” on page 6-16

Step 1. First you must choose your algorithm. The first screen of the
Optimization Wizard is shown below.

) Dptimization Wizard ] =]

Algorithm Selection
Select from the list the algorithm that you want the nesw optimization to use.

Available optimization algorithms:

Hame | Free Wariables | Objectives | Constraints | Operating Point Sets |
foptzon ary number 1 ary number 0
HEI ary number 2 or more ary number 0
ga ary number 1 ary number 0
patternzearch ary number 1 ary number 0
whorkedExample 2 1 i] 0
Cancel = Back Mext = Fimizh

The first four algorithm choices in the list are standard routines you can use
for constrained single and multiobjective optimization.

e foptcon is a single-objective optimization subject to constraints. This
function uses the MATLAB® fmincon algorithm from the Optimization
Toolbox™ product.

® NBI stands for Normal Boundary Intersection algorithm, which is
multiobjective and can also be subject to constraints.

® gaand patternsearch are only available if you have the Genetic Algorithm
and Direct Search Toolbox™ product installed.

= ga stands for Genetic Algorithm, for single-objective optimization subject
to constraints. This function uses the MATLAB ga algorithm from the
Genetic Algorithm and Direct Search Toolbox product. See “Getting
Started with the Genetic Algorithm”.
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= patternsearch is another algorithm for single-objective optimization
subject to constraints, from the Genetic Algorithm and Direct Search
Toolbox product. See “Getting Started with Direct Search”.

In many cases these standard routines are sufficient to allow you to solve
your optimization problem. Sometimes, however, you might need to write

a customized optimization algorithm; to do this you can use the supplied
template to modify for your needs. Any optimization functions that you have
checked into CAGE appear in this list. See “User-Defined Optimization” on
page 6-129 for information. The Worked Example option is designed to show
you how to use the modified template. For step-by-step instructions, see the
optimization tutorial section “Worked Example Optimization” in the Getting
Started documentation.

Note If you choose a user-defined optimization function at step 1, all choices
in subsequent steps depend on the settings defined by that function. When
writing user-defined optimizations you can choose to set predetermined
algorithm options or allow the user to make selections on any subsequent
screen of the Optimization Wizard.

Optimization Wizard Step 2

Here you select algorithm options for numbers of free variables, objectives,
and constraints. The optimization tries to find the best values of the free
variables. The options available depend on your selected algorithm.

¢ Ifin step 1 you select the foptcon algorithm and click Next, you get the
following choices:

6-11
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R — =5

Algorithm Options
Algorithins may be able to uze 5 vatiable number of terms. Select the number of each itern that you want to use in this
optirmization.

Mumber of free varisbles: I—'lil
Mumber of objectives: I—‘Iil
Mumber of constraints: I—Dil
Mumber of operating point sets: I—Dil

Cancel = Back Firizh

The foptcon algorithm can only have a single objective, so this control
is not enabled. Choose the number of free variables and constraints you
require. You can also add constraints later.

e Ifin step 1 you select the algorithm NBI, and click Next, you see this:

) optmizationwizard Il =

Algorithn Options
Algarithms may be able to use a variable number of items. Select the number of each item that you weant to use in this
optimization.

Mumber of free varisbles: I—'lil
Mumber of objectives: |—2§|
Mumber of constraints: I—Dil
Mumber of operating point sets: I—Dil

Cancel = Back Firizh
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NBI must have a minimum of two objectives, and you can choose as many

free variables and constraints as you like. You can add constraints later
if required.

Click Next to proceed to setting up free variables.

Optimization Wizard Step 3

You must select variables to link with the free variables used in your
optimization.

.} Dptimization Wizard 3 _ 1O =l
Required Yariables
td atch each required variable in the optimization ta a variable frarm the Y ariable Dictionary.
Optimization inputs; CAGE wariables:
Symbol [ CAGE Varisble | [
Freet arablel k
SPK
E
Tt
Select CAGE Yariable
Caticel | < Back | i EE | Fitirzhy |

Use this screen to associate the variables from your CAGE session with the
free variable(s) you want to use in the optimization. Select the correct pair

in the right and left lists by clicking, then click the large button as indicated
in the figure.

Once you have assigned your free variables here you can either click Next or
Finish. This also applies to all later steps in the Optimization Wizard.

¢ If you click Next you proceed to further screens of the Optimization Wizard
where you can set up objectives and constraints.
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e Ifyou click Finish you return to the Optimization view in CAGE. You can
set up your objectives and constraints from the Optimization view instead
of using the Optimization Wizard. You cannot run your optimization until
objectives (and constraints if required) have been set up.

Optimization Wizard Step 4

You can set up your objectives here or you can set them up at the Optimization
view in CAGE. See “Edit Objective” on page 6-39.

) Dptimization Wizard =10l x|

Objectives

Ohbjectives are quantities that the algorithm will attempt to optimize. Select CAGE models to be used for each objective,
and whether it should be minimized, maximized or used as a helper model for the algorithm,

Optimization objectives: CAGE models:

T0O Model
WORFLOW_Model

Dptimization Model | CAGE Model | Typs
Ohjectivel TO_Model hd awinnize
Ohjectivez HOFLOW M. Minimize

L
<

Objective type:  © Minimize & Maximize € Helper

Caticel | < Back | et = | Firizh |

Here you can select which models from your session you want to use for the
optimization, and whether you want to maximize or minimize the model
output. The foptcon algorithm is for single objectives, so you can only
maximize or minimize one model. The NBI algorithm can evaluate multiple
objectives. For example, you might want to maximize torque while minimizing
NOX emissions. Remember you can also define constraints later, for example,
using emissions requirements.

You can also include ’helper’ models in your user-defined optimizations, so
you can view other useful information to help you make optimization decisions

(this is not enabled for NBI or foptcon).

¢ (Click Next to proceed to setting up constraints.
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® (Click Finish to complete the Optimization Wizard and return to the
Optimization view. Note you can only set up point objectives in the
wizard, but you can also set up sum objectives in the main Optimization
view. See “Objectives and Constraints” on page 6-38.

Optimization Wizard Step 5

You can use models to define constraint regions that restrict free variables.
If you want to use constraints you can select them here, or add them in the
Optimization view in CAGE. You can also add other types of constraints in the
Optimization view. See “Edit Constraint” on page 6-41.

;) Dptimization Wizard -0 =l

Model Constraints
hodel Constraints define regions that the free variables can vary within, Select CAGE models to use for each
constraint. Select whether to constrain the model by a fixed value or by the model's boundary constraint.

Optimization constraints: CAGE models:
Model Constraint | CAGE Model | Bound | BT -
Constraint] RESIDFRAC Boundary il EXTEMP
<\ RESIDFRAC
- BT
<\ RESIDFRACAtMET
-\ METwithSpeedLoadBa. |~ |
Canstraint:

r RESDFRAC [-= -] | 04

% Boundary of model

Cancel = Back Finizh

Select a model for each constraint by selecting a CAGE model and a model
constraint and clicking the button to match them up.

For each constraint, either:

¢ Enter a value in the edit box to define the bound. Select the operator to
define whether the optimization output should be constrained to be greater
than or less than the value.

¢ Alternatively, select the radio button to use the Boundary of model as
the constraint.
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® (Click Finish to complete the Optimization Wizard and return to the
Optimization view.

® You can only click Next to proceed to setting up any data sets if required
by your user-defined optimization.

Optimization Wizard Step 6

If your user-defined optimization allows you to add a data set you can select
it on step 6 of the Optimization Wizard. You can use data sets to evaluate
models over a different set of operating points during an optimization run.
As an example, you could run an optimization at the points (N1, L1), (N2,
L2), but an important quantity to monitor and possibly act upon is, say,
temperature at points (N3, L3), (N4, L.4). You can monitor the temperature at
these points by using data sets, to help you select optimization results. You
can set up data sets in Step 6 of the wizard or in the Optimization view in
CAGE (select Optimization > Edit Data Sets).

Data sets are not enabled for foptcon and NBI optimizations.
Click Finish to return to the Optimization view in CAGE. Your new

optimization appears as a new node in the tree pane on the left, and the setup
details appear on the right.

Optimization View Toolbar

YL

Common tasks are available in the toolbar:

® Add Objective — Adds an objective to your optimization (if enabled;
remember foptcon can only have a single objective). You must double-click
the new objective to open the Edit Objective dialog box, select a model, and
set whether to maximize or minimize. See “Edit Objective” on page 6-39.

¢ Add Constraint — Adds a constraint to your optimization. You must
double-click the new constraint (in the list of constraints) to open the
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Constraint Editor and set up the constraint. See “Edit Constraint” on page
6-41

® Import from a data set, import from optimization output, import from table
grid, import from table values — You can use these to populate the Variable
Values panes by importing values — See “Defining Variable Values” on
page 6-29.

¢ Set Up Optimization, Set Up and Run Optimization — Both these options
open the Optimization Parameters dialog box, where you can change
optimization settings such as tolerances and number of solutions. When
you close the dialog box the settings are saved (and the optimization runs
in the case of Set Up and Run). See “Using the Optimization Parameters
Dialog Box” on page 6-48.

¢ Run Optimization — Starts the optimization. See “Running Optimizations”
on page 6-46.

Setting Up Sum Optimizations

CAGE can solve sum type optimizations. These optimizations find the optimal
settings of control parameters at several operating points simultaneously.
Sum optimizations are useful for solving drive cycle problems where the

constraints have to be applied across the whole cycle, e.g. weighted engine
out brake specific NOx <= 3 g/kWh.

To set up a sum optimization:

1 Use the first 3 steps of “Optimization Wizard” on page 6-9 to create
your optimization, defining the algorithm, number of objectives and free
variables.

2 For simple model constraints it is optional whether you set them up in the
wizard or later in the Optimization view. To apply other types of constraints
you must use the Optimization view. You can apply linear, ellipsoid, 1-D
table, 2-D table, and range constraints, and some constraints are specific to
sum optimizations—sum constraints and table gradient constraints.

See “Edit Constraint” on page 6-41 for details of all these constraints.

3 For a sum optimization, it is highly likely that the objectives are sum
objectives. For sum objectives you must configure your objectives in

6-17
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the Optimization view, not in the optimization wizard. To configure the
objectives to be sum objectives, follow the instructions in “Sum Objectives”
on page 6-40.

4 Set variable values for the points where you want the optimization
to run. See “Defining Variable Values” on page 6-29. You can enter
values manually, or by importing from data sets or the output of existing
optimizations.

For sum optimizations you must also use the length controls when defining
the variable values. See “Using Variable Values Length Controls” on page
6-20.

5 Run the optimization. See “Running Optimizations” on page 6-46.

6 View the results (see “Optimization Output Views” on page 6-63).
For descriptions of optimization output specific to sum problems, see
“Interpreting Sum Optimization Output” on page 6-115.

Example Sum Optimization

The following sections describe the controls and outputs for sum optimizations
using the following example problem for illustration.

Say you have created models for torque (TQ), residual fraction (RESIDFRAC)
and exhaust temperature (EXTEMP) for a gasoline engine.

The inputs to these models are

e Spark advance, S

Intake cam timing, INT

Exhaust cam timing, EXH
¢ Engine speed, N
Relative load, L

You need to set up an optimization to calculate optimal settings of S, INT and
EXH for the following operating points:
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N

1000
1100
1250
1500
1625

0.3
0.2
0.31
0.25
0.18

The objective for this optimization is:

Maximize the weighted sum of TQ over the operating points.

The constraints for this optimization are:

Constraint 1: EXTEMP <= 1290°C at each operating point
Constraint 2: RESIDFRAC <= 17% at each operating point

Constraint 3: Change in INT is no more than 5.5° per 500rpm change in N
and 5.5° per 0.1 change in L, evaluated over a 3-by-3 (N, L) table.

Constraint 4: Change in EXH is no more than 5.5° per 500rpm change in N
and 5.5° per 0.1 change in L, evaluated over a 3-by-3 (N, L) table.

You can use the foptcon algorithm in CAGE to solve this problem.

This example is used to explain the controls and outputs in the following
sections, “Using Variable Values Length Controls” on page 6-20 and

“Interpreting Sum Optimization Output” on page 6-115.

What Is a Run?. Sum type optimizations determine optimal settings of
operating points simultaneously. Thus, one call to the algorithm determines
the optimal settings of the control parameters at each operating point.

Each call to the optimization algorithm is known in CAGE as a run. The
number of runs that CAGE will perform is indicated in the Number of runs
control in the Input Variable Values pane. See the next section, “Using

Variable Values Length Controls” on page 6-20.

See “Algorithm Restrictions” on page 6-23 for details on the optimization

algorithm restrictions in CAGE.
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Using Variable Values Length Controls

You use the Input Variable Values pane to set variable values for the points

where you want the optimization to run. (See “Defining Variable Values” on

page 6-29). You can enter values manually or by importing from data sets or
the output of existing optimizations.

For sum optimizations you must also use the Number of Values length
controls when defining the variable values.

At the optimization node the Input Variable Values pane has Number

of Values controls for each free and fixed variable. Use these controls to
increase the number of operating points per optimization run. If you leave all
the Number of Values set to one, each row in the values panes represents
one optimization run. See “What Is a Run?” on page 6-19.

® You can edit the Number of Values directly, or you can select
Optimization > Set Variable Lengths to change all variable lengths
at once.

® You can quickly toggle between N runs of one point and a single run of N
points (which can be used as a drive cycle for sum optimization problems)
using the Optimization menu items Convert to Single Run and
Convert to Multiple Runs. You can also use the Number of Values
controls to define your sum optimization runs.

If you increase the Number of Values of a fixed or free variable, then the
number of operating points within each run increases, as shown in the
following example.

Free Variahles | Fixed Yariables |
Yariable: = ExXH INT “ariable: | Ohjective. .. H L

hae ol s=ll SEIl sS Nl sl SEIT SE

1 (11 15117 22414 30778 1 (1] 1 1000 03
(2 13.745 29173 34.534 21 1 1100 nz2
(3 176 36.74 45575 31 1 1250 0.3
(41 22.054 244 43.411 (4] 1 1:300 023
(5] 20.561 33.945 39.514 5 1 1624 014

The input variable values are configured for the example problem, showing a
single run (left column under Number of Values shows 1) of five operating
points (as shown in the right column under Number of Values). The
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optimizer simultaneously finds the optimal settings of S, EXH and INT at all
the operating points, starting at the initial values shown in the Free Variables
table for each point.

The index of each operating point is indicated by the number in brackets in
the right column under Number of Values, for example the third operating
point is N=1250, L.=0.31.

When objectives or constraints require weights or bounds you can enter them
in the Input Variable Values pane. In the example problem, the objective
requires specified weights for the weighted sum of torque, so the column
Objectivel weights appears in the Fixed Variables pane, where you can
enter weights for each point. For an example see “Setting Weights for the Sum
Objective and Constraint” in the diesel case study.

You can also run a sum optimization over different sets of operating points.
Consider the following example, an optimization of the weighted sum of fuel
consumption over two different drive cycles.

Input Yariskle Yalues |

Mumber of runs: I 2 él “ector display format: IExpanded wertically - I
Free “Yariables | Fixed Yariahles |
wariahle: 3 ExH InT “ariahle: | Ohjective... H L
IS G| | S ar | IES | ES| |G
1 11 15117 22414 F9.775 1 (11 1 1000 0.3
2] 13745 291735 34.554 (2] 1 1100 0.2
3] 176 36.74 45575 (3] 1 1250 0.31
4] 22034 24.4 43.411 (4] 1 1500 0.25
()] 20.561 33.945 39.514 5 1 1625) 0.18
2 1 25 225 225 2 (11 1 5000 0.55
21 25 2245 22.5 (2) 1 5214 0.5
31 25 22.5 225 (3) 1 5564 0.6
(4 25 225 225 (4) 1 5847 064
[5) 25 225 225 (5] 1 6000 07

The preceding figure shows an optimization that runs twice (Number of
runs has been set to 2, and the left column under Number of Values shows
2 runs). Each run contains five operating points (as shown in brackets in the
right column under Number of Values).
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The optimization algorithm will be called twice (two runs). In the first run,
optimal settings of S, EXH and INT will be simultaneously calculated for each

point in the first drive cycle, as shown in the following table.

N L
1000 0.3
1100 0.2
1250 0.31
1500 0.25
1625 0.18

In the second run, optimal settings of S, EXH and INT will be calculated for
each point in the second drive cycle, as shown in the following table.

N L
5000 0.55
5214 0.5
5564 0.6
5847 0.64
6000 0.7

In the previous examples, the number of values for each variable is identical.
It is also possible to specify a mixture of scalars and vectors for each variable,
as shown in the following example.

Free Variables | Fixed Yariakles |
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Wariahle:

EXH

INT

“arishle:

Ohjective...

5
[ =il

Mumber of
values:

5

=

Mumber of
values:

[ s=ll s<

L
[ s&l

1 | m 15117

22414

F0.7TE

2

22414

3

22414

G2

22414

=

22414

1

1000

03

(2)

1100

nz

)]

1230

0.31

)

1a00

025

)]

RO IR R e Y

1625

o1&

The Number of Values controls are independent for each variable. In the

preceding figure:
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¢ S Number of Values = 1
¢ EXH Number of Values =5
e INT Number of Values = 1

In this case, the single initial value of S is used for every drive cycle point in
the optimization, and similarly for INT (and the optimizer will return a single
value for S and INT for the run).

Algorithm Restrictions

Each run of a CAGE Optimization makes a call to the algorithm you have
chosen to use. This algorithm needs to evaluate the objectives and constraints
(probably several times) to allow it to determine the optimal settings of the
free variables. Optimization algorithms typically have restrictions on the
number of objective and constraint outputs they can handle. The following
table details the restrictions on the two algorithms provided in CAGE.

Algorithm Name Objectives Constraints
Foptcon One output Any number of outputs
NBI Two or more outputs Any number of outputs

When each objective and constraint is evaluated during a run, the number
of outputs it returns depends on the maximum number of values of all of its
inputs. The following table details the number of outputs each objective type
returns as a function of the maximum number of values of all of its inputs.
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Point

One

A point objective is evaluated
at each operating point within
a run, and all the values are
returned.

A sum objective evaluates a
model at every operating point
and returns one value, which is
the weighted sum of the model
evaluations.

Similarly, the following table details the number of outputs each constraint
type returns as a function of the maximum number of values of all of its inputs.

Linear
Ellipsoid
1D Table
2D Table
Model
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These constraints are evaluated
at every operating point within
a run, and all values are
returned.
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Constraint Maximum Number of Reason
Type Number of  Outputs

Values of All

Inputs to the

Constraint

Range N 0, Nor 2N A range constraint evaluates
an expression at each operating
point within a run. The
constraint returns two values
for each point, the distance from
the lower and upper bound.

In this case 2N outputs are
returned. If one of the bounds is
infinite, then only the distance
to the finite bound is returned
for each point, and N outputs
are returned. If both bounds are
infinite then O outputs will be
returned.

Sum N 1 A sum constraint evaluates
a model at every operating
point and returns the difference
between the weighted sum of
the model and a bound.

Table N >=8 A table gradient constraint
(dependent constrains the gradient of a
on settings) free variable over a grid. The

number of outputs returned
depends on the dimensions of
the grid.

You can use these three tables to check whether the problem set up satisfies
the algorithm restrictions. As an example, the following table checks whether
the example problem (detailed in “Example Sum Optimization” on page 6-18)
satisfies the restriction of the algorithm chosen to solve it, foptcon.
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Maximum Number
of Values of All
Inputs

Weighted sum of TQ 5
over the drive cycle
points

Objective

Number of Outputs

1 (using the Objective
table)

Maximum Number
of Values of All
Inputs

EXTEMP <= 1290°C at 5
each drive cycle point

RESIDFRAC <= 17% at 5
each drive cycle point

Change in INT is no 5
more than 5.5° per 500
rpm and 5.5° per 0.1
change in LL

Constraint

Change in EXH is no 5
more than 5.5° per 500
rpm and 5.5° per 0.1
change in LL

Number of Outputs

5 (using the Constraint
table)

5 (using the Constraint
table)

24 (this value is
the number of table
gradient constraint

outputs generated from
a 3-by-3 table)

24 (this value is
the number of table
gradient constraint

outputs generated from
a 3-by-3 table)

Thus, the example problem has 1 objective output and 58 constraint outputs.
This satisfies the restrictions of the foptcon algorithm and so the algorithm

can be used.

Parallel Computing in Optimization

If you have the Parallel Computing Toolbox™ product available, you can
distribute optimization runs to a cluster of computers. The optimization
runs are then executed in parallel. This option can significantly reduce the
computation time for larger problems where each run is taking a lot longer
than the time it takes to send the problem to another computer.
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This functionality only appears in the menu if you have the Parallel
Computing Toolbox product installed.

To use distributed computing in your optimizations:

1 You first need to set up a configuration that defines a scheduler for
distributed computing.

After you have set up a configuration, in CAGE select

Optimization > Distributed Computing > Select Scheduler. The
Parallel Computing Toolbox Scheduler dialog box appears. Select the
configuration in the list that defines your scheduler, and click OK. You only
need to do this once per user per machine.

2 To use distributed computing, select Optimization > Distributed
Computing > Distribute Runs. A tick appears next to the menu item,
and the Optimization Information pane shows Distributed runs: On.
This setting is saved with your optimization. If you try to run the same
optimization on a machine without distributed computing you see a
warning.

3 If your optimization requires additional files (such as user defined
optimization scripts, function model M-files, user-defined models) you
must also distribute these to the workers. To specify these, select
Optimization > Distributed Computing > Set Job Parameters. In
the dialog box, add files and paths required on the workers. Paths must be
relative to the worker.

4 When you run the optimization, each run is performed on a worker.
Running the optimization creates a distributed computing job, that
distributes a task for each run.

CAGE displays a modal status dialog box, displaying progress messages
until the job is completed. If the job is being held in the scheduler’s
execution queue, you see the message Waiting for job to be started.
While the job runs, the progress bar tells you how many tasks are complete
and how many tasks are currently running.

For more information about these terms and settings, see Parallel Computing
Toolbox on the MathWorks Web site.
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Note Opening matlabpool may prevent other jobs (e.g., distributed
optimizations in CAGE) from being processed. See “Parallel Model Building”.
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Defining Variable Values

In this section...
“What Are Variable Values?” on page 6-29
“Define Variables Manually” on page 6-29

“Import from a Data Set” on page 6-31
“Import from Output” on page 6-33
“Import from Table Grid” on page 6-36

“Import from Table Values” on page 6-37

What Are Variable Values?

In the optimization view, you can use the Variable Values panes to define a
set of operating points for the optimization. You do not have to choose a set
of operating points; if you do not, however, the optimization runs at a single
point of your choosing (the set points of variables is the default).

Running the optimization requires the selected models to be evaluated (many
times over) and hence values are required for all the model input factors.
The default values for the fixed variables are their set points, as shown in
the Fixed Variables pane. You chose one or more free variables, so the
optimization chooses different values for those free variables in trying to find
the best value of the objectives. The default initial value for a free variable is
the set point, as shown in the Free Variables pane.

To define the set of operating points for the optimization, you can define

variables manually, or you can import values from these sources: data set,
optimization output, table grid, or table values.

Define Variables Manually
To define values manually:

1 In the Input Variable Values pane, increase the Number of runs. New
rows appear for both fixed and free variables, all containing the default
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set point values of each variable. Each row defines an operating point for
an optimization run.

2 Edit the values in the Fixed Variables pane to define the points where
you want to run the optimization.

* You can copy and paste values from other parts of CAGE (existing
optimizations or data sets etc.), or from the Help Browser or other
documents.

® You can select Optimization > Import From Data Set if you have
suitable variables to import.

® You can select Optimization > Import From Output if you have
suitable optimization outputs.

An example is shown in the following figure.

Fixed Yarishles

“arighle: L M A E

i | S| = | = | =
1 0.1 1000 12 5
2 0.8 1000 12 5
3 0.1 3000 12 5
4 0.5 3000 12 5
5 0.1 G000 12 5
5} 0.8 E000 12 5

3 Edit the values in the Free Variables pane in a similar way, if you want to

define the starting values of the free variables, or you can leave these at
the default.

® For foptcon optimizations you can specify a number of initial starting
values per run, see “foptcon Optimization Parameters” on page 6-48.

¢ If you wish to restrict the range of the free variables, you can select
Optimization > Edit Free Variable Ranges. The default is the range
of the variable as defined in the Variable Dictionary.

4 Use the right-click context menu to duplicate or delete runs, or select Fill
All Runs to copy the selected run’s values to all other runs.
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The Number of Values controls are for sum optimizations. See “Setting Up
Sum Optimizations” on page 6-17.

Import from a Data Set

1 Select Optimization > Import From Data Set (or use the toolbar button)
to define the operating points for an optimization from a data set, if you
have suitable variables to import. The Import From Data Set dialog box
appears.
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) Import From Data Set o =] 1

Data set ta impart from:
[ Crly shove data sets that contain optimization inputs

[Matme Rorevs | Conterts
7] Operating_points 42/, L
Kl | 0
Select data set columns to use:
Import | Optimization Input Data Set Column
C B il
I |ece hd
[~ cp hd
I Y &N =
F L Bl [

— Import options

* Use one data set rove for each run Catter number of runs)

(™ Use entire data set column for each run Catter lenoth of each variable)

QK I Cancel

2 Select a data set.
3 Select data set columns to import.

4 Choose whether you want a run per data set row (alter number of runs),
or each imported variable to have the same length as the number of data
set rows (alter length). For information on altering the length of variables
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(for sum optimizations only), see “Using Variable Values Length Controls”

on page 6-20.

5 Click OK to import the variable values.

Import from Output

1 Select Optimization > Import From Output to import starting values
from the output values of a previous optimization. The Import From
Output dialog box appears.

) Import From Dutput

Optimization output to impaort fram:

¥ Only show outputs that contain optimization inputs

=0l x|

Fows | Soltions

Free “arishles

Fixedvariables

Mame
i Optimization_Output

100 1|5, ECP, ICP M, L
[ Optimization_output_1 100 1|5, ECP, ICP M, L
Kl | [ |
Select output columns to use:
Import | Optimization Input Output Y alue
vV = X 5 =
¥ |ecp X ECP ]
¥ ice x Icp 5
M N X N .
VL x L [

— Selection within output
Runs: (& Al
" Selection:
i Acceptable
" Unacceptable

Salition: %) Selected solution
| Solution:

————

[ s

Select in Tahle... |

— Import options

* Use ane output rowy for each run (atter number of runs)

= Use entire output column for each run Catter length of each varisble)

Ok | Cancel |
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2 Select the desired optimization output.

3 Select the columns from the output you want to import.

4 Choose the runs from the optimization output that you want to use. The
Selection within output controls allow you to choose a subselection. If
the number of values per run differs between current inputs and selected
outputs, the inputs are altered to match.

Select the option button All to import all runs.

Select the option button Selection to import a subset of runs. You can
enter a vector specifying the runs you want to import (e.g., 1 3 6:9),
or click the button Select in Table to open a dialog box and select
runs manually.

Select the option button Acceptable to use only the runs with a selected
Accept check box. See “Using Acceptable Solutions” on page 6-65. Click
the button Select in Table to open a dialog box and view or edit the
selection.

Select the option button Unacceptable to use only the runs without a
selected Accept check box. Click the button Select in Table to open a
dialog box and view and edit the selection.

For multiobjective optimizations you can choose to use the selected
solutions or a solution number.

5 Use the Import options buttons to choose whether you want a run per
output row (alter number of runs), or each imported variable to have the
same length as the number of output rows (alter length).

If you click the button Select in Table you see the following dialog box.
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T — =101

Select a subset of the output data by highlighting & selection of rovws inthe displayed table of
output data, If there are multiple solations in the output you can look st each solution,

Run selection: |:14 22253236 43:47 53 Saluticn: €% Selected|salution
{ Solution: I 1 %I

Select runs based on acceptability: IAcceptabIe - l Select |

“Wector display format: IW

Fun | Accept 5 ECP ICP H L ob
14 @ = 22.565 5 26581 1000 04l 4
15 ® 22548 11592 16109 1000 0s

16 ®r 24 507 20116 20418 1000 06

17 L 1 25 25 225 1000 07 J
18 & 25 225 22.5 1000 08

19 ® 25 225 225 1000 03

20 ®r 25 225 225 1000 1

21 ®r 2,234 31993 18977 1500 01

22 d F 2.685 50 50 1500 02

23 Q = 23.089 2077 24321 1500 03

24 @ ~ 26,935 = 31.996 1500 04

25 o ~ 33.054 3767 50 1500 05

26 ®r 25 25 225 1500 06

27 ® | 25 225 22.5I 1500 07 _ILI

A4 »

Ok I Cancel |

Highlight cells in the table (Shift+click, Ctrl+click, or click and drag) to
select runs to import.

If you chose a subselection on the parent dialog box (e.g., a vector of runs
or an acceptable status), the table appears prefiltered with runs selected
by those choices. You can filter again for acceptable status on this dialog
box: select Acceptable or Unacceptable from the drop-down list and click
the Select button.

If there are multiple solutions in the output you can browse them with the
Solution controls.

When you are satisfied with the selected runs, click OK to return to the
Import From Output dialog box. Click OK to import the runs.
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Import from Table Grid

1 Select Optimization > Import From Table Grid to import starting
values from the breakpoint values of a table. The Import From Table Grid
dialog box appears.

) Import From Table Grid ) -0l x|

Select table to import grid from:

Mame Size Riovy Input Column Inpt
B EXHCAM 1010 L M -
T A 1010 L !
MET_Easze 1010 L M
L MET Dusl 1010 L N
Ll MET Exhaust 10010 |L N d

— Import optionz

{+ Use one table cell for each run (after number of runs)

{ Usze alltable cells for each run (after length of each wariskle)

Ok Cancel

2 Select the desired table in the list.

3 Use the Import options buttons to choose whether you want a run per
table cell (alter number of runs), or each imported variable to have the
same length as the number of table cells (alter length).

4 Click OK.

When you click OK, values for each table cell are imported into the
optimization input variable values pane, e.g., for a 10 by 10 table, 100 starting
points are imported.
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Import from Table Values

1 Select Optimization > Import From Table Values to import starting
values from the evaluation of a table. The Import From Table Values dialog
box appears.

) Import From Table Yalues

Fill optimization input variable values with the evaluation of & table. Unmatched
inputs are unattered by the import. Matched inputs are replaced with an

evaluation of the table st the current optimization values.

=101 x|

Zelect table walues to impaort:

Impart | Cptimization Ingput Fill Input Wit
V¥ |s W MET Baze ha
W |Ecr W ExHCAM =
I~ lice a
| =]
L =]
04 Cancel

2 For each input you want to import, select the appropriate table from the
Fill Input With list.

The check box for an input is automatically selected when you select a
table for it.

You cannot choose to fill an input with a table that depends on it.

3 Click OK.

When you click OK, your selected optimization inputs are replaced with an
evaluation of the table at the current optimization values. Other inputs are

not altered.
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Objectives and Constraints

6-38

In this section...

“Overview of Objectives and Constraints” on page 6-38
“Edit Objective” on page 6-39
“Edit Constraint” on page 6-41

Overview of Objectives and Constraints

You can set up objectives and constraints from the main CAGE Optimization
view, as well as within the Optimization Wizard.

You can perform the following tasks by using the right-click context menu or
Optimization menu (if allowed by the algorithm—foptcon can only have a
single objective):

* You can Add, Edit, Rename, or Delete objectives and constraints.

® For objectives, if your objective model has a boundary model, you can select
Add modelname Boundary to Constraints. This shortcut allows you to
set up a boundary constraint without needing to open the Edit Constraint
dialog box.

® For constraints, you can select Disable to remove constraints without
deleting them, and use Enable to reapply them.

Double-click to edit existing objectives and constraints in the Objectives
or Constraints panes. This opens the Edit Objective or Edit Constraint
dialog boxes.

You can run two types of optimizations, point optimizations and sum
optimizations. Point optimizations look for the optimal values of each objective
function at each point of an operating point set. A sum optimization finds the
optimal value of a weighted sum of each objective function. The weighted sum
is taken over each point, and the weights can be edited. For an example, see
the tutorial section “Sum Optimization” in the Getting Started documentation.

You need to use the Edit Objective dialog box and Edit Constraint dialog box
to set up sum objectives and model sum constraints. You must do this to run
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weighted sum optimizations. You cannot set these up from the Optimization
Wizard.

You can also set up linear, 1- and 2-D table, and ellipsoid constraints in the
Edit Constraint dialog box, as for designs in the Model Browser part of the
Model-Based Calibration Toolbox™ product.

Edit Objective
Double-click or right-click objectives to open the Edit Objective dialog box.

) Edit Dbjective =100 ]|

Ohbjective type: IPoird Ohjective & I A point objective function is & CAGE model that provides P
an objective to be optimized for each set of input values. N
Ohbjective name: Ebjective

Available models: Ohjective type:

Mozl Type = Minimize
TE_Madel MEC mocel i* Maximize

4:\ MOKFLOW haodel WEC model € Helper

Selected model TQ_Madel

Ok I Cancel | Helgp |

You can select Point objective or Sum objective from the Objective type
drop-down menu. Use sum objectives only for weighted sum optimizations;
otherwise, use point objectives.

You can rename the objective by editing the Objective name edit box, to aid
analysis in the Optimization views. This may be disabled for user-defined
optimizations.
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Point Objectives

The preceding example shows the point objective controls. Select which

models from your session you want to use for the optimization, and whether

you want to maximize or minimize the model output. The foptcon algorithm
is for single objectives, so you can only maximize or minimize one model. The
NBI algorithm can evaluate multiple objectives. For example, you might want
to maximize torque while minimizing NOX emissions.

You can also include ’helper’ models in your user-defined optimizations, so
you can view other useful information to help you make optimization decisions

(this is not enabled for NBI or foptcon).

These are the same options you can choose in the Optimization Wizard. See
“Optimization Wizard Step 4” on page 6-14.

Sum Obijectives

For weighted sum optimizations, the objectives are typically sum objectives.
See the following example.

) Edit Objective 10l =l
Objective type: ISum Ohjective - I A sum ohjective function calculates the weighted sum of the B
output of a CAGE model as its abjective value, _ ¥
Ohjective name: ETG o A
Available models: Ohjective type:
Macel Type ™ Minimize
4 BTo MEC model & Maximize
~f\ EXTEMP MBI mocdel  Heler
vﬂ RESIDFRAC MBC model
~f\ MET MBI mocdel
vﬂ REZIDFRACaMET MBC model
4 METwithSpeedLoadBoundary [ MBC model
Selected model: BT
Ok I Cancel Help
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As for point objectives, select which models from your session you want to
use for the optimization, and whether you want to maximize or minimize
the model output.

You can edit weights in the Optimization view, to make certain operating
points more important, giving more flexibility to solutions for other points.
You can edit the weights in the Fixed Variables pane. This is the same
process as selecting weights for the Weighted Pareto View. See “Weighted
Objective Pareto Slice” on page 6-76.

For a tutorial example of a sum optimization, see “Sum Optimization” in
the Getting Started documentation.

Edit Constraint

You can rename the constraint by editing the Constraint name edit box, to
aid analysis in the Optimization views. This may be disabled for user-defined
optimizations.

Select a Constraint type in the drop-down menu. The first four choices are
the same as the following design constraint types:

® “Linear Constraints”

e “Ellipsoid Constraints”

e “1-D Table Constraints”

e “2-D Table Constraints”

These are the same constraints you can apply to designs in the Model Browser
part of the Model-Based Calibration Toolbox product.

In the context of optimization you can select constraint inputs on the
additional Inputs tab. You can select any variable or model as an input into
constraints. The default selects the free variables where possible. Models are
treated as nonlinear functions, so if you choose to feed a model into a linear
constraint it will make that constraint nonlinear. You are not able to access it
as a linear constraint in user-defined optimization scripts.

For optimization constraints you can also select the following constraint types:
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® “Model Constraints” on page 6-42
* “Range Constraints” on page 6-43
® “Sum Constraints” on page 6-44

e “Table Gradient Constraints” on page 6-44

Model Constraints
To construct a model constraint:

1 Select an Input model in the left list.

2 You can use the Evaluate quantity drop-down list to choose Evaluation
value, Boundary constraint, or PEV value (model prediction error
variance) to define your constraint.

3 Choose the appropriate option button to either enter a value in the
Constant edit box, or to select a CAGE item from the list of models or
variables.

4 Select the Constraint type operator to define whether the optimization
output should be constrained to be greater than or less than the constant or

item value specified on the right.

5 Check the displayed Constraint description, and click OK.

The model constraint settings are shown in the following figure.
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). Edit Constraint | =10/ ]

Constraint type: IModeI - I Model constraints keep only points where the output value [~
of an expression is above or beloyy the specified limit. i
Constraint name: FO}(

Input madel; Constraint baund:
Model Type # constert. | 250 2|
-k To_Model MEC model ' CAGE tem:
N MOXFLCWY hodel WMEBC madel IShnw odele d
Constraint type: adel Type
o= - s T Wadel ME mode]
A ECELEVY Iade] MEC model
Evalugte guantity: IEvaIuatiDn value j Evallate guantity: IEvaIuatinn wallue d

Constraint description: |NO)(FLOW_MndeI(SPI~{, L N, & E)==250

Ok I Cancel | Help |

Range Constraints
You can specify an upper and lower bound to constrain expressions (which

can be variables, models or tables). You can specify bounds with constants,
vectors, variables, models, or tables.

1 Select a CAGE item to constrain on the Bound Expression tab. Use the
drop-down menu to switch between variables, models, or tables, and then
select the item to constrain. For appropriate models you can also choose
to constrain either the PEV or evaluation value.

2 On the Lower Bound tab, select an option button to choose whether to use a
constant, vector, or CAGE item to specify the bound.

® For constants, enter a value.

® For vectors, you can enter the lower bound for each point in the Input
Variable Values pane in the Optimization view after you close the Edit
Constraint dialog box.
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¢ For CAGE items, use the drop-down menu to switch between variables,
models, or tables, and then select the item to specify the lower bound.
For appropriate models you can also choose to use either the PEV or
evaluation value.

3 Specify the upper bound on the Upper Bound tab in the same way as you
specified the lower bound on the Lower Bound tab.

4 Check the displayed Constraint description, and click OK.

For a detailed explanation of range constraint outputs, see “Range Constraint
Output” on page 6-86.

Sum Constraints
Use these for weighted sum optimizations. Choose a model, constraint bound
value and an operator.

You can have a mixture of point and sum constraints.

See the tutorial “Sum Optimization” in the Getting Started documentation for
a step-by-step example, and for descriptions of optimization output specific to
sum problems, see “Interpreting Sum Optimization Output” on page 6-115.

Table Gradient Constraints

Table Gradient constraints allow you to constrain the gradient of a free
variable over a grid of fixed variables. These constraints are most useful in
’sum’ problems. Unless you are using a user-defined optimization, you should
normally use a sum objective (and therefore runs normally have multiple
values).

1 Select a free variable to constrain.

2 Specify one or two fixed variables, and a grid of points either manually
or by selecting table axes.

3 Enter values in the edit boxes to specify the maximum change in the free
variable per amount of fixed variable change between cells. For example,
enter 5 and 1000 to specify 5 degrees maximum change in cam angle per
1000 rpm.
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4 Check the displayed Constraint description, and click OK.

For a detailed explanation of table gradient outputs, see “Table Gradient
Constraint Output” on page 6-121.
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Running Optimizations

When you click Finish to complete the Optimization Wizard, you return to
the Optimization view in CAGE. Your new optimization appears as a new
node in the tree pane on the left, and the setup details appear on the right.
An example follows:

) CAGE Browser - tradeoffInit.cag 10l =|
File Edit Optimization Tools Window Help

Dsa|x|#2(? |[[vamBSE
Processes Optirnization | Ohbjectives | Optirnization Information
...... Optimization MNarme |Descripﬁon |Type Algort... |mbc:OSfminc:0n
jective _Model JLN, A, 2 [Algorit... [Single objective...
Ay Objectivel TG _Model(SPK, L, M, &, E) Maxi (Algorit... [Single objecti
Free ... |SPK
Feature
LN M
;.5 ii', <| | iy
[} !
‘a‘ lJ | Constraints |
Naine | Descrigtion [statu |
4 constraintt MOKFLOWY_Model(SPHK, L, M, &, ..
« I o
Free Wariahle Intial ‘alues Fixed “ariahle Yalues
Murnber of runs: I 1 il “ector display format: IExpanded WEF... vl
“ector display format: IExpanded WEF... vl Wariahle: L i 1
Mumber of 1= = l_
Variable: | SPK EIUES: = =
Mumber of 1= 1 | 1 06 2300
values: =
1 ] 0
JE1 i

If your optimization is ready to run you can click Run Optimization in the
toolbar to proceed. You may want to define variable values before running the
optimization. If you need to set up any objectives or constraints Run will not
be enabled. If your optimization is ready to run you can also click Set Up and
Run Optimization if you want to change algorithm-specific settings such as
number of required solutions and tolerances for termination.
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¢ Ifyou click Set Up and Run Optimization, you can change settings in
the Optimization Parameters dialog box. Then when you click OK the
optimization process begins. See “Using the Optimization Parameters
Dialog Box” on page 6-48.

¢ Ifyou click Run Optimization instead, you do not see the optimization
settings, but go straight to running the optimization.

You will see a progress bar as the optimization proceeds. When it is finished,
a new Output node appears under your Optimization node in the tree and the
view automatically switches to this node where you can analyze the results.
An example tree is shown in the following figure. See “Optimization Output
Views” on page 6-63.

Optiization |
=-[#] Optirmization
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Using the Optimization Parameters Dialog Box

In this section...

“Overview of the Optimization Parameters Dialog Box” on page 6-48
“foptcon Optimization Parameters” on page 6-48

“NBI Optimization Parameters” on page 6-51

“GA Optimization Parameters” on page 6-56

“Pattern Search Optimization Parameters” on page 6-59

“Scale Optimization” on page 6-62

Overview of the Optimization Parameters Dialog Box

The settings in the Optimization Parameters dialog box are algorithm specific.

If you edit these settings and later want to return to the defaults, select
Optimization > Reset Parameters. If you add parameters to user-defined
optimization scripts, you may need to use this reset option to make all new
parameters appear in the dialog box.

foptcon Optimization Parameters

The foptcon optimization algorithm in CAGE uses the MATLAB® fmincon
algorithm from the Optimization Toolbox™ product. foptcon wraps up the
fmincon function so that you can use the function for maximizing as well as
minimizing. For more information, see the fmincon reference page in the
Optimization Toolbox documentation, fmincon.
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) Dptimization Parameters

—Dizglay:

—Maximum iterations:
—Maximum function evalustions:
—ariable tolerance:

—Function tolerance:
—Canstraint tolerance:

—Minimum change in variables far gradiernt:

—Mumber of start points:

—Run from feasible start points anly:

—Maximum change in variables for gradient:

=101 ]

E]tfnptcon

Inone

fpon

fioo0

fre-o08

fre-o08

fre-o08

fre-o0s

na

f
=

Interface version to Use svhern runmine aptirnzstion: IMDS‘t recert version - I

QK I Cancel

¢ Display — choose none, iter, or final. This setting determines the level
of diagnostic information displayed in the MATLAB workspace.

= none — No information is displayed.

= iter — Displays statistical information every iteration.

= final — Displays statistical information at the end of the optimization.

¢ Maximum iterations — Choose a positive integer.

Maximum number of iterations allowed

¢ Maximum function evaluations — Choose a positive integer.

Maximum number of function evaluations allowed
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Variable tolerance — Choose a positive scalar value.
Termination tolerance on the free variables

Function tolerance — Choose a positive scalar value.
Termination tolerance on the function value

Constraint tolerance — Choose a positive scalar value.
Termination tolerance on the constraint violation
Minimum/maximum change in variables for gradient

Choose a positive scalar to control the input step size that is taken when
gradients are being calculated. The default settings should work for the
majority of problems.

Number of start points — Choose a positive integer, N. (N-1) start points
per run are generated in addition to the starting value specified in the
Input Variable Values pane.

The optimization runs from each of the N start points (possibly subject
to feasibility, see Run from feasible start points only option) and the
best solution is chosen.

The N-1 extra start points are generated as follows:
a Generate a 10000 point Halton set design, D, over the free variables.
b Evaluate the objectives and constraints over D.

¢ Return the N-1 feasible points with the lowest objective value.

If there are not N-1 feasible points, fill the remaining starting values
with the points with the lowest maximum constraint violation.

Note For point optimization problems, it is strongly recommended that
you set Number of start points to either 1 or 2.

Run from feasible start points only — Select this option to terminate
all runs that start with an initial value that does not satisfy the constraints.
If this condition is not met this is reported in Output message, in the
Solution Information pane of the Optimization Output view.
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® Interface version — This option is only enabled when a user-defined
optimization script does not specify a version to use. Some existing
user-defined optimization scripts may require setting the interface version
as 2 or 3, according to the toolbox version. Version 3 is preferable, but may
not work with all old scripts. See setRunInterfaceVersion for details.

NBI Optimization Parameters

¢ “Background on the NBI (Normal Boundary Intersection Algorithm)” on
page 6-52

e “NBI Options” on page 6-55

e “NBI Output Messages” on page 6-56

The example following shows the NBI options in the Optimization Parameters
dialog box.
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RI=TE
MEI
IJ:'I—OptiDnS: INnrmaI Boundary Interse... d
—Tradeoff points per ohjective pair: |1III
[=-Shadow minima options: IShadoW d
—Dizglay: Innne d
—Maximum function evaluations: |1IJD
—Maimum iterations: tZD
—Function tolerance: 'J.IZIIZIIZH
—“ariable tolerance: 'J.IZIIZIIZH
—iZonstraint tolerance: 'J.IZIIZIIZH
[=-MEIl subproblem options: INBISubproblem d
—Dizglay: Innne d
—Maximum function evaluations: |1IJD
—Mlaximum terations: ITZD
—Function tolerance: 'J.EIEIEH
—“ariable tolerance: 'J.EIEIEH
—iConstraint tolerance: 'J.EIEIEH
Interface version to Use svhern runmine aptirnzstion: IW
Ok, I Cancel |

Background on the NBI (Normal Boundary Intersection
Algorithm)
To understand the options for the NBI algorithm, some limited understanding

of the algorithm is required. For more information on the NBI algorithm, see
the NBI home page at the following URL:

http://www.caam.rice.edu/~indra/NBIhomepage.html
The NBI algorithm is performed in two steps. The first step is to find the

global of each objective individually. This is called the shadow minima
problem, and is a single-objective problem for each objective function. The


http://www.caam.rice.edu/%7Eindra/NBIhomepage.html

Using the Optimization Parameters Dialog Box

MATLAB routine fmincon is used to find these . Once these are found, they
can be plotted against each other. For example, consider an NBI optimization
that simultaneously maximizes TQ and minimizes NOX emissions. A plot of
the against each other might resemble the following.

TQ

Best possible
value of TQ

Best possible
value of NOx

NOx

The second step is to find the "best" set of tradeoff solutions between your
objectives. To do this, the NBI algorithm spaces Npts start points in the (n-1)
hypersurface, S, that connects the shadow . In the above example, S is the
straight line that connects the points N and T. For each of the Npts points
on S, the algorithm tries to maximize the distance along the normal away
from this surface (this distance is labeled L in the following figure). This is
called the NBI subproblem. For each of the points, the NBI subproblem is

a single-objective problem and the algorithm uses the MATLAB fmincon
routine to solve it. This is illustrated below for the TQ-NOX example.
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TQ

The figure above shows spacing of the points between the along the (n-1)
surface. The algorithm tries to maximize the distance L along the normal
away from the surface. The following figure shows the final solution found

by the NBI algorithm.
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TQ

o Pareto front

Solutions in this region are not optimal.

NOx

NBI Options

¢ Tradeoff points per objective pair (Np)

The number of tradeoff solutions between your objectives that you want to
find, Npts, is determined by the following formula:

_(n+Np-2
NP”‘( No-1 ]

where
= Np is the number of points per objective pair.

= n is the number of objective functions.
Note the following:

® For problems with two objectives (n = 2),
Npte = Np

® For problems with three objectives (n = 3),

6-55



6 Optimization

6-56

Npts =

Np(Np+1)
2

¢ Shadow minima options and NBI subproblem options

The NBI algorithm uses the MATLAB fmincon algorithm to solve the
shadow minima problem and the NBI subproblems, the options available
are similar to those for the foptcon library function. For more information
on these options, see the previous section, “foptcon Optimization
Parameters” on page 6-48.

NBI Output Messages

The NBI algorithm provides exit messages that can be seen in the
Optimization output view, in the Solution Information pane, for the
currently selected run. Check these messages to check for problems with
your optimization.

All possible exit flags and messages are shown in the following table.

Exit Message

flag

6 The shadow minima do not differ from one another. This suggests
that all objectives can be minimized simultaneously. Check that
the objectives are competing or alter tolerances.
All shadow and NBI subproblems converged to a solution.
At least one of the NBI subproblems is infeasible.
The maximum number of function evaluations was reached in at
least one of the shadow or NBI subproblems.

-1 Optimization terminated prematurely by the user.

-2 At least one of the shadow problems is infeasible.

-7 At least one of the Pareto solutions is dominated.

GA Optimization Parameters

The ga optimization algorithm in CAGE uses the MATLAB ga algorithm
from Genetic Algorithm and Direct Search Toolbox™ product. In CAGE, ga
wraps up the ga function from this toolbox so that you can use the function
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for maximizing as well as minimizing. If you have Genetic Algorithm and
Direct Search Toolbox product installed, see “Getting Started with the Genetic

Algorithm”.

) Dptimization Parameters |

El:ga

—Dizplay:
—Crossover function:
—Croszover fraction:
—hutation function:
—Selection function:
—Population size:
—zenerations:
—Hyhrid function:
—Stall generations:
—Stall time limit:
—Function tolerance:

—Constraint tolerance:

—Time limit:

Interface version to use wwhen running optimization:

=101 x|

Innne j
Iscattered j
g

Iadaptfeasible j
Itu:uurnament j

L

host recent version j

K

Cancel

* Display — choose none, iter, final, or diagnose. This setting determines
the level of diagnostic information displayed in the MATLAB workspace.
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= none — No information is displayed.
= iter — Displays statistical information every iteration.
= final — Displays statistical information at the end of the optimization.

= diagnose — Displays information at each iteration. In addition, the
diagnostic lists some problem information and the options that have
been changed from the defaults.

Crossover function — Choose a function to use to generate new
population members from the existing GA population by crossover. For
more information on each function, see the Crossover Options section in
the Genetic Algorithm and Direct Search Toolbox documentation. It is
recommended not to use a heuristic crossover function for nonlinearly
constrained problems.

Crossover fraction — Choose a scalar in the range [0 1]. This parameter
specifies the fraction of the next generation, other than elite children, that
is produced by crossover.

Mutation function — Choose a function to use to generate new population
members from the existing GA population by mutation. The fraction of the
next generation, other than elite children, that is produced by mutation is
(1 minus Crossover fraction). Also, for nonlinearly constrained problems,
the mutation function must be set to adaptfeasible.

Selection function — Choose a function to use to select the population
members that will be used as the parents for the crossover and selection
functions.

Population size — Choose a positive integer value. Number of population
members used by the algorithm. See the Genetic Algorithm and Direct
Search Toolbox documentation for guidelines on setting the population size.

Generations — Choose a positive integer value. The algorithm stops when
the number of generations reaches the value of Generations.

Hybrid function — Choose an optimization function that will run after
the GA has terminated to try to improve the value of the objective function.
Note that if the algorithm has nonlinear constraints, the hybrid function
cannot be fminunc or fminsearch. If either of these algorithms is selected
in this case, the hybrid algorithm switches to fmincon.
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¢ Stall generations — Choose a positive integer value. The algorithm stops
when the weighted average change in the objective function over Stall
generations is less than Function tolerance.

e Stall time limit — Choose a positive scalar value. The algorithm stops if
there is no improvement in the objective function during an interval of time
in seconds equal to Stall time limit.

* Function tolerance — Choose a positive scalar value. The algorithm runs
until the weighted average change in the fitness function value over Stall
generations is less than Function tolerance.

* Constraint tolerance — Choose a positive scalar value. This tolerance
determines whether a population member is feasible with respect to the
nonlinear constraints.

¢ Time limit — Choose a positive scalar value. The algorithm stops after
running for an amount of time in seconds equal to Time limit.

Pattern Search Optimization Parameters

The patternsearch optimization algorithm in CAGE uses the MATLAB
patternsearch algorithm from Genetic Algorithm and Direct Search Toolbox
product. In CAGE, patternsearch wraps up the patternsearch function
from this toolbox so that you can use the function for maximizing as well as
minimizing. If you have the Genetic Algorithm and Direct Search Toolbox
product installed, see “Getting Started with Direct Search”.
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—Dizplay:

—Time limit:

—hlaximum number of iterations:
—Mdaximum function evaluations:
—wariakle tolerance:

—Function tolerance:
—Caonzstraint tolerance:

—Mesh size tolerance:

—Initial mesh size:

—Paoll methiod:

—Search method:

Interface version to use wwhen running optimization:

). Optimization Parameters |
El:patternsearch

=10l x|

II'II:II'IE

'nf

f1oo

j1oo000

f1=-008

f1=-008

f1=-008

f1=-008

f

IGPSF‘:::s'rtiveEiasiSEN

|

II'IIIII'IE

host recent version j

|

K

Cancel

¢ Display — Choose none, iter, final, or diagnose. This setting determines
the level of diagnostic information displayed in the MATLAB workspace.

= none — No information is displayed.

= iter — Displays statistical information at every iteration.
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= final — Displays statistical information at the end of the optimization.

= diagnose — Displays information at each iteration. In addition, the
diagnostic lists some problem information and the options that have
been changed from the defaults.

Time limit — Choose a positive scalar value. The algorithm stops after
running for an amount of time in seconds equal to Time limit.

Maximum number of iterations — Choose a positive scalar value. This
parameter specifies the maximum number of iterations performed by the
algorithm.

Maximum function evaluations — Choose a positive integer value. The
algorithm stops if the number of function evaluations reaches this value.

Variable tolerance — Choose a positive scalar value. The algorithm stops
if the distance between two consecutive free variable values is less than
the variable tolerance.

Function tolerance — Choose a positive scalar value. The algorithm
stops if the distance between two consecutive objective function values and
the mesh size are both less than Function tolerance.

Constraint tolerance — Choose a positive scalar value. Determine
feasibility with respect to the nonlinear constraints.

Mesh tolerance — Choose a positive scalar value. The algorithm stops if
the mesh size is smaller than Mesh tolerance.

Initial mesh size — Choose a positive scalar value. Sets the initial size
of the mesh for the pattern search algorithm. Do not set this value too
small, as insufficient size may lead to the algorithm getting trapped in
local optima.

Poll method — Choose a poll method from the drop-down list. This
parameter sets the polling strategy that will be used by the pattern search
algorithm. Generally, the GPSPositiveBasis2N and MADSPositiveBasis2N
methods will be slower than the GPSPositiveBasisNp1 and
MADSPositiveBasisNp1 methods. However, the former methods perform a
more thorough search. For more information on these methods, consult the
Genetic Algorithm and Direct Search Toolbox documentation.

Search method — Choose a search method from the drop-down list. This
parameter selects a function that will perform a search in addition to that
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performed by the pattern search algorithm. For automotive problems,
searchlhs tends to perform well. For more information on the possible
search methods, consult the Genetic Algorithm and Direct Search Toolbox
documentation.

Scale Optimization

The Optimization menu contains the option to Scale Optimization Items
— Select this to toggle scaling on and off. When you select scaling on, objective
and constraint evaluations are (approximately) scaled onto the range [-1 1].
With scaling off, when you run the optimization the objective and constraint
evaluations return their raw numbers.

Try running your optimization with scaling off, which is the default setting, to
see if it converges to a satisfactory solution (check the output flags and the
contour view). If your optimization solution is unsatisfactory, check to see if
the objective and constraint functions have vastly different scales. In this
case, try turning scaling on, because these optimization problems may benefit
from objective and constraint evaluations being scaled to a common scale.

The output view always shows the solutions in raw, unscaled values, whether
or not you use scaling to evaluate the problem.
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Optimization Output Views

In this section...

“Using the Optimization Output View” on page 6-63
“Using Acceptable Solutions” on page 6-65

“Solution Slice: Optimization Results Table” on page 6-67
“Solution Slice: Results Surface and Results Contour Views” on page 6-69
“Pareto Slice” on page 6-74

“Weighted Objective Pareto Slice” on page 6-76

“Selected Solution Slice” on page 6-78

“Objective Slice Graphs” on page 6-80

“Objective Contour Plot” on page 6-81

“Pareto Front Graphs” on page 6-82

“Constraint Slice Graphs” on page 6-83

“Constraint Summary Table” on page 6-85

Using the Optimization Output View

When you have run an optimization an Output node appears in the
optimization tree and the Optimization Output views appear. Use the
toolbar buttons shown in the following figures to determine what is displayed
in the table and the graph views. The first default view is the Solution Slice
table and the Objective Slice Graphs.

Use these toolbar buttons or the View menu to select the following Table
Views:

a3 E

e “Solution Slice: Optimization Results Table” on page 6-67 and “Solution
Slice: Results Surface and Results Contour Views” on page 6-69— See also
“Using Acceptable Solutions” on page 6-65

e “Pareto Slice” on page 6-74
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o “Weighted Objective Pareto Slice” on page 6-76
® “Selected Solution Slice” on page 6-78

Use these toolbar buttons to select the following Graph Views:

=[] A=[r =l

® “Objective Slice Graphs” on page 6-80

® “Objective Contour Plot” on page 6-81

® “Pareto Front Graphs” on page 6-82

® “Constraint Slice Graphs” on page 6-83

® “Constraint Summary Table” on page 6-85

* Free Variable Values Table — displays the values of the free variables
for the currently selected solution.

® Solution Information Table — displays information about the currently
selected solution, including the Accept status, the algorithm exit flag and
exit message, and other algorithm details such as the number of iterations.

Hover the mouse pointer over the Exit message to see the whole message.
This message can tell you, for example, if an foptcon optimization run
terminated because no feasible start point was found.

You can split and add these views as in the Design, Data and Boundary

Editors. Use the right-click context menu, the View menu, or the buttons in
the view title bars to do so.

| E
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The last four toolbar buttons are also in the Solution menu:

o Select solution — This option is for multiobjective optimization, used for
choosing your preferred solution for each operating point. See “Selected
Solution Slice” on page 6-78.

e Edit pareto weights — This option is used for evaluating weighted sums.
See “Weighted Objective Pareto Slice” on page 6-76.

¢ Export to data set — This option exports the table visible in the current
view only to a new or existing data set. See “Using Optimization Output”
on page 6-91.

¢ Fill tables using optimal solutions — This option opens the Table Filling
From Optimization Results Wizard. See “Using Optimization Output”
on page 6-91.

® The Solution menu also has Retain Output (also in the context menu
when you right-click an optimization output node). If you select this
option, the output node is retained, so if you rerun the optimization you
get additional output nodes.

Note For help understanding your results, see “Analyzing Point-by-Point
Optimization Output” on page 6-99 or “Interpreting Sum Optimization
Output” on page 6-115.

Using Acceptable Solutions

CAGE automatically selects successful optimization solutions and highlights
unsuccessful solutions for you to investigate. These selections are shown in
the icons and check boxes next to the Run column in the Optimization Results
table, and shown in the Results Surface and Results Contour views. You can
change the selections using the check boxes for each solution, or right-click to
change acceptable status of solutions in the graphical views.

You can use these selections to choose solutions within the table for use in:

¢ “Filling Tables from Optimization Results” on page 6-93
e “Exporting to a Data Set” on page 6-91
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® Importing to other optimization starting values: “Import from Output”
on page 6-33.

Accept status is shown in the following ways:

¢ CAGE automatically selects the Accept check boxes for solutions where
the algorithm exit flag indicates success (>0). These solutions show a
green square icon next to the check box. Typically constraints are met
within tolerance.

gl v

® Solutions with a red round icon indicate that the algorithm exit flag does
not report success (<0). Some constraints may not be met.

LIN=l

¢ Solutions with an orange triangular icon indicate that the algorithm
exit flag is zero. Some constraints may not be met. An exit flag of zero
indicates the algorithm failed because it exceeded limits on the amount of
computation allowed (e.g., the algorithm ran out of iterations or function
evaluations). You could decide to accept these solutions or you could try
changing tolerances and optimizing again.

A

¢ Solutions where you have altered the check box status show an asterisk.

Al |

® Violated constraints are shown by yellow cells with cross icons in the
table. You can control the value used for this highlighting by selecting
View > Edit Constraint Tolerance.

4703157

It is possible to have highlighted constraints within green accept status
solutions. The algorithm can report success if constraints are met within
tolerance on scaled values. The constraint display applies a tolerance to
raw values, and you can also edit this tolerance to help you analyze results.
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If you are viewing constraints with more than one value and have the
view set to Compact, the cell is yellow if any of the individual values are
infeasible.

® You can view the algorithm output flag in a tooltip by hovering the mouse
pointer over each colored accept status icon, or click to select a solution and
you can view the algorithm Exit flag, Exit message and other details
in the Solution Information table.

The icon and (editable) Accept status check box are also shown at the top
right for the currently selected solution.

Note For help understanding your results, see “Analyzing Point-by-Point
Optimization Output” on page 6-99.

Solution Slice: Optimization Results Table

The Solution Slice view (click W ) shows a table with one solution at all
operating points and all runs. The solution is shown in both tabular and
graphical forms — see “Solution Slice: Results Surface and Results Contour
Views” on page 6-69 for information on the graphical views.

The following example shows a Solution Slice table display.
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@ Solution: il 1 ﬂ ‘ Current run: 23 Current solution: 1 O v Accept

Optimization Results

“ector display format: IExpanded harizantally d
Run @ Accept 5 ECP IZP I L Objectived | Constraint! | Constraint2 | ©
12 [ ]I 1.77 7097 45.405 1000 0.2 54037 7.214 -5.5341 =
13 L 16.551 -3.23 21674 1000 0.3 31.505 -224 865 4 25588-3(x=
14 O~ 22565 -5 26.581 1000 0.4 E0.305 -311.524| -1.776e-14
15 L 22.845 11592 16.101 1000 04 &1.624 -337.33 - 227 (=
16 ® 24 507 20116 20415 1000 05 109325 -333.793 -0.018|=
17 L 25 225 225 1000 07 128.739 -346.111 -2.53 (=
15 ® 25 225 225 1000 0.5 144739 -362.19 -5,588|=
19 L 25 225 225 1000 04 155.055 -386.752 -5.203(=
20 ® 25 225 225 1000 1 159.512 -423.925 -10,639|=
21 L 2234 31.993 15977 1500 01 915765 -1566.769 -6.671 (=
22 O~ a0 a0 1500 0.2 EBOF1.122) -4311.949 -40.011
23 e -1 873 24315 1500 0.3 34 .49 -253.265 4 .528e-3
24 O~ -5 31.996 1500 0.4 52481 -272634|  -1.202e-5
25 0 = -3.767 a0 1500 04 92199 -307.091 -0.405
26 ® 225 225 1500 05 113.329 -269 654 -1.323|=
27 L 225 225 1500 07 135415 -27519 -4 57T (=
28 ® 225 225 1500 0.5 155179 -282.73 -7 AB|E

The Solution Slice view shows a table of one solution at all operating points
and all runs in the problem. For single-objective optimizations there is only
one solution per operating point, so the Solution Slice is the only useful view.
For multiobjective optimizations with more than one solution per run, you can
scroll through the solutions using the arrows or edit box at the top.

The table shows the selected solution at all operating points. The Optimization
Results pane shows the fixed variable settings, the optimal free variable
settings, and the evaluation of objectives and constraints at the optimal free
variable settings.

Click inside the table to make the graph views (objective slice, constraint slice
and pareto front) display the selected operating point.

® The “Objective Slice Graphs” on page 6-80 show the objective functions at
the operating point selected in the table, with the solution value in orange.
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¢ If you have constraints you can also choose to display the “Constraint Slice
Graphs” on page 6-83. These show the constraint functions at the selected
operating point with the solution value in orange.

¢ If you are viewing a multiobjective optimization you can also choose to
display the “Pareto Front Graphs” on page 6-82, which show the available
solutions with the current selection highlighted in red.

® You can also display the “Constraint Summary Table” on page 6-85, which
details the distance to each constraint edge for the selected operating point
in the table. This table can be useful to see at a glance if a solution met all
the constraints. If there are many constraints it can be time-consuming to
use the constraint graphs to verify that the constraints are met.

Before you run an NBI optimization you can specify how many solutions you
want the optimization to find, using the Set Up and Run Optimization toolbar
button.

For information on selecting best solutions at each operating point for
subsequent export to a data set or filling tables, see “Selected Solution Slice”
on page 6-78.

Solution Slice: Results Surface and Results Contour
Views

Surface View of Optimization Results
The Results Surface view shows a 3D plot of one solution at all operating

points and all runs in the problem. Use the axes popup controls to change
what is plotted on each axis. You can plot the following against each other:
¢ Fixed variable settings

¢ Optimal free variable settings

e Evaluation of objectives at the optimal free variable settings

The optimization results are plotted as points, and an extrapolation surface

(of the z-axis quantity as a function of the x and y-axis quantities) is also
displayed.
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Each optimization result is displayed using the Accept icon, as shown in the
Optimization Results table:

e [ Successful result

@ Failed result
£ Problem result

. ﬂ? User-altered accept status.

@ Currently selected result (black outline). Select results by clicking an
icon in the plot or a value in the table. Changing the currently selected
result in the Results Surface view also updates the result selected in the
table, and updates any plots displayed in the lower half of the output view.
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Results Surface

Left-click anywhere except an icon to rotate the plot.
Use the right-click context menu to control these options:

¢ Results to Display

= All — Show all optimization results for this solution

Acceptable — Show only the acceptable results for this solution

Green — Show the results with a positive exit flag

= Orange — Show the results with a zero exit flag
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= Red - Show the results with a negative exit flag

* Set Acceptable — mark an optimization result as acceptable if it is
currently marked as unacceptable.

Any results whose acceptability has been changed are shown as stars in
the plot

¢ Set Unacceptable — mark an optimization result as unacceptable.

e Extrapolate All — toggles extrapolation from acceptable solutions only
(default) to using all results for extrapolation.

¢ Surface Options
= Reset Axes Orientation — Reset the axes orientation to the default.
= Show Axes Grid — Toggle whether the axes grid is displayed or not.
= Show Axes Box — Toggle whether the axes box is displayed or not.
= Hide Surface — Toggle whether the surface is visible or not.

= Show Stems — Use this option to additionally display stems projected
from the data to the surface. These stems can be useful to show the
location of results that are not used in the extrapolation and are hidden
by the surface.

Contour View of Optimization Results

The Results Contour view shows a contour plot of one solution at all
operating points and all runs in the problem. You can plot the following
against each other: fixed variable settings, optimal free variable settings and
evaluation of objectives at the optimal free variable settings.

The optimization results are plotted as points in the contour plot and
extrapolation contours (of the z-axis quantity as a function of the x and y-axis
quantities) are also displayed. The accept icon for each result is plotted as for
the Results Surface.
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Results Conkour
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Rotation is not permitted in the contour view.

The right-click context menu shares these options with the Results

Surface view: Results to Display, Set Acceptable/Unacceptable, and

Extrapolate All. Some additional items for the contour view:

¢ Contour Options
= Label Contour Lines

= Fill Contours
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= Contour Levels — These contour options are identical to those for
the objective contour view.

= Show Axes Grid — Toggle whether the axes grid is displayed or not.
= Hide Contour — Toggle whether the contour is hidden or not.

= Display Contour — Toggle whether the contour is displayed or not.

Pareto Slice

The Pareto Slice table view (click 1") is for multiobjective optimization where
there is more than one solution at each run. The Pareto Slice shows a table
of all solutions at one run; you can scroll through the runs using the arrows
or edit box at the top.

To collect best solutions across different runs, you need to use the Select
Solution function in the toolbar.

To select a solution for each run:

1 Enable the Selected Solutions view. Select Solution > Selected
Solution > Initialize.

The Create Selected Solution dialog box appears.

<) Initialize Selected S o ] 4|
Default salution nutnker: I 1 i‘

Ok I Cancel |

The default 1 initializes the first solution for each run as the selected
solution. You can edit the solution number here if you want. For example,
if you select 4, solution number 4 is initialized as the best solution for every
run. When you click OK, the toolbar buttons for the Selected Solution
Slice view and Select Solution are enabled.

2 Decide which solution you want to use for the currently selected run. Use
these tools to help you:
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¢ Display the “Pareto Front Graphs” on page 6-82 (click in the
toolbar) which show the available solutions with the current selection
highlighted in red.

¢ Use the pareto front graphs together with the “Objective Slice Graphs”
on page 6-80 to select the best solution for the run. If you have
constraints you can also use the “Constraint Slice Graphs” on page 6-83
and “Constraint Summary Table” on page 6-85 to help you decide which
solution to choose for each run.

3 When you have decided which solution you want to use for the currently

selected run, you can select it as best by clicking Select Solution ( ﬂ ) in
the toolbar. You can also select best solutions in the Solution Slice view, see
“Solution Slice: Optimization Results Table” on page 6-67 .

4 Scroll through the runs and select a best solution for each. These selections
are collected in the Selected Solutions Slice, where you can use them to fill
tables or export to a data set. You can also import them to an optimization.
See “Selected Solution Slice” on page 6-78.

Before you run an NBI optimization you can specify how many solutions you
want the optimization to find, using the Set Up and Run Optimization toolbar
button.

@ Run: dl Sj ‘ Current run: 3 Current solution: 5 @ vV &ccept

Optimization Outpot “Yalues

Wector display format: IExpanded haorizortally j

Solution | [@) Accept| grackmea egriit ty_desired afr_min measrpm | Okjectivel | Okjective? | Constraintt | Con
1 & -16.604 -252.651 200 30 5000 0.39 1.668 1.239eh
2 L -0.92 -9.753 200 30 5000 -78.305|  -1.789e-3| 48152482 4
3 L -0.426 -27.69 200 30 a000 56569 4.074e-3|E 4703187 -4
4 L -4.196 200 30 000 72481 11893 -4028.09
5 L I3 5123 200 30 5000 -100689| -2259e-4| -2955.292|F 2
E L -1.815 200 30 5000 -944975| -6.094e-4| 3125105/ 3
T L -1.644 200 30 =000 J7764|  -TEO08e-4| -3TVIEI 3
g L A A 577 200 30 5000 -81.286| -T¥3e-d| 3619442 3
9 L -1.552 200 30 5000 -82665| -7.778e-4| 3563195 3
10 L 429.743 949.514 200 30 2000)  1.421e-5| 17473161 5.108e10] -5
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As in the other table views, you can use the Accept check boxes to choose a
selection of rows within the table. In this table view, you can only use this to
select solutions within a single run. Each different solution has a check box
and colored icon for “Acceptable” status. There is only one exit flag per run, so
all solutions have either red or green Accept status. You can override these
selections using the check boxes if you want to choose solutions within a run,
for use when importing to other optimizations, or for future reference. See
“Using Acceptable Solutions” on page 6-65.

Weighted Objective Pareto Slice

The Weighted Objective Pareto Slice view (click I ) shows a weighted
sum Pareto solution. This table shows a weighted sum of the objective values
over all runs for each solution. For a single objective optimization there is a
single cell, which is the sum of the objective across all runs.

In the following multiobjective example, the value in the Objectivel column
in the first row shows the sum of the solution 1 values of the first objective
across all runs. The second row shows the sum of solution 2 Objective1
values across all runs, and so on for all ten solutions in this case. This
information can be useful, for example, for evaluating total emissions across a
drive cycle. The default weights are unity (1) for each run.

<| 1 ﬂ Current run: <none: Current solution: 3
Optimization Output Values
“ector display format: IExpanded harizantally d
Solution | @) Accept | Objectivet | Objective?
1 [ r 164.316| 16064
2 M r 179212 173.762
3 @ r 1 &
4 M r 20689  205.359
5 [ r 0355 226825
£ [ r 230611 250 961
7 M r 240,351 279 656
& [ r 248171 314004
g M r 253516| 355203
10 @ r 255571 404 93
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You can change the weights; for example, if you need a weighted sum of
emissions over a drive cycle, you might want to give a higher weight to
the value at idle speed. You can alter weights by clicking Edit Pareto

Weights ( M ) in the toolbar. The Pareto Weights Editor appears.

) Pareto Weights Editor =15 =]

Chjectives: Weights for Objective!;
- % Table entry:

Ohbjective? =
Weights

10

-

h |4 (L |k =

-

" MATLAE vector:

" Output column:
I F|
LI Select data from =olution: I 1 %

Ok | Cancel | Help |

In this dialog box, you can select objectives to sum, and select weights for any
run by clicking and editing, as shown in the previous example. The same
weights are applied to each solution to calculate the weighted sums. Click OK
to apply new weights, and the weighted sums are recalculated.

You can also specify weights with a MATLAB® vector or any column in the
optimization output by selecting the other option buttons. If you select
Output column you can also specify which solution; for example, you could
choose to use the values of spark from solution 5 at each operating point as
weights. Click Table Entry again, and you can then view and edit these
new values.
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Note Weights applied in the Weighted Pareto View do not alter the results
of your optimization as seen in other views. You can use the weighted sums to
investigate your results only. You need to perform a sum optimization if you
want to optimize using weighted operating points.

The Accept check box is disabled in this view. The exit flag is the minimum of
all of the runs that are summed over, so the Accept status can only go green
if all runs are green.

Selected Solution Slice

In a multiobjective optimization, there is more than one possible optimal
solution at each run. You can use the Selected Solutions view to collect and
export those solutions you have decided are optimal at each run.

After you enable the Selected Solution view, you can use the plots and table
views to help you select best solutions for each run. These solutions are
saved in the Selected Solutions view. You can then export your chosen
optimization output for each point from the Selected Solutions view to a
data set, or use your optimization output to fill tables or import to another
optimization.

You cannot select best solutions until you have enabled the Selected
Solutions view.

1 Select Solution > Selected Solution > Initialize.

A dialog box called Create Selected Solution appears. The default 1
initializes the first solution for each run as the selected solution.

2 Edit the solution number in this dialog box if you want. For example if you
select 4, solution number 4 is initialized as the best solution for every run.
When you click OK, the toolbar buttons for the Selected Solutions view
and Select Solution are enabled.
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<) Initialize Selected So o ] 4|
Default salution nutnker: I 1 i‘

Ok I Cancel |

3 After you enable the Selected Solutions view, you can use the table views
and the plots in the graphs (Objective Slice, Pareto Front, and Constraint
Slice graphs) to help you select best solution for each run.

a Click in the “Pareto Slice” on page 6-74 (or Solution Slice) table to select
a point to display in the graphs until you can decide which solution you
want for a point.

b Click Select Solution ( ﬂ ) in the toolbar to select the current solution
as best.
Repeat steps a and b until you have selected solutions for all points.

These solutions are saved in the Selected Solutions view. This view collects
all your selected solutions together in one place. For example, you might want
to select solution 7 for the first run, and solution 6 for the second, and so on.
You can then use your chosen optimization output for each point to fill tables
(see “Filling Tables from Optimization Results” on page 6-93), or choose the

&,
Export to Data Set B toolbar and Solution menu option (see “Exporting to a
Data Set” on page 6-91), or use these solutions as starting points in another
optimization (see “Import from Output” on page 6-33).

An example of the Selected Solutions view is shown. It looks similar to the
Solution Slice view, except the solution controls at the top are not enabled.
You cannot change solution number in this view. The solution chosen as
best (in the other views) for the currently selected run is displayed in the
grayed-out edit box.

As in the other table views you can use the Accept check boxes to choose a

selection of rows within the table. See “Using Acceptable Solutions” on page
6-65.
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| s , Current run: 4
l__. ! Soludar ‘I g ﬂ | Current salution: 3
Cptitnization Cutput Yalues
“ector display forimat: IExpanded harizortally d
“ariahle: = H L ExH IMT Objectivel | Objective2
Lergtn: || 1 H [ 13 13 =N = = | =
1 24 996 1000 0.3 225 225 32198 993746
2 3347 2000 0.3 225 225 I7.873 1104653
3 45993 3000 0.3 225 225 35217 11804238
4 s0.730 [ EEEY 03 25 225 3618 1249649
5 34757 5000 0.3 225 225 31664 1279681
E 34521 4000 0.5 225 225 90.017)  1242.291
7 16887 1000 04 225 225 86 365 1035158
g 24 955 1500 0.5 225 225 §6.969) 1054412

Objective Slice Graphs

The objective slice graphs are displayed by default for optimization output

in the toolbar.

views, or you can select
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o ' ' ' ' ' ' ' ' '
= [ I
65 1 e R SRR
60 4 e
55 4 e
50 -
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The objective slice graphs show the objective functions at the point selected in
the table, with the solution value in orange. Whether the table is displaying a
solution slice or pareto slice, the cell you select in the table is always displayed
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in the graphs. The objective graphs show cross section plots of the objective
function against each free variable in the problem.

The yellow areas show a region outside a constraint tolerance (such as

a boundary constraint exported from the Model Browser part of the
Model-Based Calibration Toolbox™ product, or any other optimization
constraint). All constraint regions in optimization displays (as in the rest
of the toolbox) are shown in yellow.

Use the right-click context menu to toggle constraint display and alter graph
size.

Objective Contour Plot

The Objective Contour Plot (click ) shows the contours of the objective
against any pair of control parameters, at the run selected in the table, with
the solution value at the center of the orange cross-hairs. Yellow areas show
a region outside a constraint tolerance (see the following figure). This view
can be useful for exploring objective functions—a visual way to help avoid
local minima.

S0 T 92,5

92
91.5
9N
0.5
a0
§9.5
83
85.5
88

¥-axis factor: IE)(H d -axis factor: IINT d

Select parameters to plot in the drop-down lists, and if you have more than
one objective you can select from the Objective drop-down list.

6-81



6 Optimization

6-82

Use the right-click context menu to toggle constraint display, contour labels,
fill contours, and colorbar, and control other options such as number and
placing of contour levels.

Pareto Front Graphs

The Pareto Front Graphs (click ) are for multiobjective optimization where
there is more than one solution at each run. The Pareto Front graphs show the
available solutions for the selected run with the current selection highlighted
in red. Click in the tables or graphs to select solutions. The selected solution
is displayed in all other graphs (objective and constraint).

Before you run an NBI optimization you can specify how many solutions you
want the optimization to find, using the Set Up and Run Optimization toolbar
button to access the Optimization Parameters dialog box.
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You can use the Pareto Front graphs, shown in the preceding figure, in
combination with the table views (Solution Slice and Pareto Slice) and the
other plots in the graphs (Objective Slice and Constraint Slice graphs) to help
you select best solutions for each run. You can collect these solutions together
in the “Selected Solution Slice” on page 6-78.
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Constraint Slice Graphs

The Constraint Slice graphs (click E) show the constraint functions at the
selected operating point with the solution value in orange. Click inside the
tables to select solutions to display. Yellow areas on the graphs show a region
outside a constraint tolerance, as shown in the following figure.

Conskraink Graphs

1600 : - . : . . - - =
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famod | 1oon ........... o .......... ......... ...... ......... ......... _

Constraint1

1300 {4

1200

1100

0 20 40 o 20 40 0 20 40
S ExH IMT

This example shows the constraint EXTEMP < 1290° C.

The constraint graphs (the blue lines) show how the Left Value of each output
of a constraint (in this case, the EXTEMP model) depends on the free variables
in the optimization (in this case S, EXH and INT). The Left Value is compared
with a plot of the Right Value output (in this case, 1290° C) on the same axes.

The red horizontal line denotes the Right Value (i.e., the upper bound on
EXTEMP) which in this case is 1290° C). Because this value is an upper bound,
the yellow region above the red line shows where the constraint is infeasible.
Yellow is shown above the Right Value plus the tolerance — on many graphs
the distance is too small to see between the red line and the tolerance

line where the yellow begins. By default, this tolerance is taken from the
optimization constraint tolerance. You can control the value used for this
highlighting by selecting View > Edit Constraint Tolerance.

The vertical orange lines show the optimal values of the free variables; the
intersection of these with the blue lines is marked with a blue triangle on the
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Constraintl axis—this intersection is the Left Value (1290° C) at the optimal
settings. These are the Left and Right values in the Constraint Summary
table for Constraintl. See “Constraint Summary Table” on page 6-85.

Note Use the right-click context menu to alter graph size.

If a constraint is violated at the solution value, the Y axis is highlighted in
yellow, as shown in Constraint 2 in the following example. If constraint
values are greater than the tolerance, the row is highlighted in yellow. By
default, this tolerance is taken from the optimization constraint tolerance.
You can control the value used for this highlighting by selecting View > Edit
Constraint Tolerance.

Constraint Graphs

=
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See also “Range Constraint Output” on page 6-86 for an explanation of range
constraint graphs, and “Constraint Graphs ” on page 6-119 for specific sum
optimization features, such as a table gradient constraints.
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Constraint Summary Table

The Constraint Summary Table (click i ) view displays the constraint values
for the selected solution in the table. This view can be useful to see at a glance
if a solution met all the constraints. If there are many constraints it can

be time-consuming to use the constraint graphs for verification. If you are
using equality constraints or tight table gradient constraints, the graphs

can appear entirely yellow and you can only see whether a feasible solution
has been found by looking at the Constraint Summary Table, shown in the
following figure.

Conskraink Summary

Mame Description Constraint Yalue Left Walue Right “'alue
E Constraint1 EXTEMPIS, M, L, ExH, INT) == 1280 6.081 1296.051 1290
E Constraint2 RESIDFRACIS, M, L, EXH, INT) == 17 -13.895 3105 17
E Constraint3 Boundary constraint of BTGCS, M, L, ExXH, INT) 0.94 0.94 u]

Constraint values greater than the tolerance appear in bold, and the row is
highlighted in yellow. By default, this tolerance is taken from the optimization
constraint tolerance. You can control the value used for this highlighting

by selecting View > Edit Constraint Tolerance. These results should be
checked as they may show the optimization failed to find a solution within the
constraint, or they may be within tolerance (very close to zero). Constraint
values less than zero are within the constraint.

Constraints are evaluated as inequalities, e.g., Constraintl, as shown in the
preceding figure, is EXTEMP < 1290° C. The Left Value shows the left side of
the inequality at the optimal settings of the free variables (in this case, the
output of the constraint model (EXTEMP), which is 1296.081° C). The Right
Value shows the right side of the inequality (in this case, the upper bound,
1290° C). The constraint value is the difference between the Left and Right
values, and the distance to the constraint edge. In this case, the EXTEMP
constraint is violated, so the row is yellow, and the positive Constraint value
of 6.081 is highlighted in bold.

For additional information on working with constraints, see the following
topics:

¢ “Range Constraint Output” on page 6-86 for an explanation of range
constraints in the summary table.
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® “Constraint Summary” on page 6-120 for specific sum optimization
features, such as table gradient constraint outputs.

Range Constraint Output
The range constraint output is best explained using an example problem.

Control parameters or free variables: S, EXH, INT
Fixed variables: N, L

Objective: Maximize TQ(S, EXH, INT, N, L) at the fixed values shown in the
following table.

Run N L
1 3000 0.5
2 4000 0.6

Constraint: Restrict S between an upper and lower bound shown in the
following table.

Run N L Min S Max S
1 3000 0.5 20 30
2 4000 0.6 30 40

When the optimization is run the optimizer returns the following optimal
values of S, EXH and INT, as the following table shows.

Run N L Optimal S Optimal Optimal INT
EXH

1 3000 0.5 21.33 8.593 29.839

2 4000 0.6 30 5 7.767

Range constraints implement the following expression:

Lower Bound (LLB) < Expression £ Upper Bound (UB)
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In CAGE, this expression is implemented as two upper-bound constraints,
namely:

RangeConLeft(1) | |—Expression < —-LB| [ RangeConRight(1)
RangeConLeft(2) | “| UB | | RangeConRight(2)

A range constraint returns two values at each operating point within a run,
as shown in the following expression:

Expression

RangeConOut(1)
RangeConOut(2)
The two values that the range constraint returns are the distance from the

lower bound, RangeConOQOut(1), and the distance from the upper bound,
RangeConOut(2), respectively.

—Expression + LB
Expression —UB

The constraint in the example problem is
LB(N,L) = S < UB(N,L)
CAGE implements this constraint as
-S < -LB(N,L)
S | | UB(N,L)
and returns the following two values at each operating point within a run to
the optimizer (in this point-by-point example there is only one point per run):

RangeConOut(1) | |-S+LB(N,L)
RangeConOut(2)| | S-UB(N,L)

Optimization Output Yalues
INT I L S_Lower... |S_UpperB... | Objectivel | Constraint1
Run  |@)Accept 12 12 12 12 12 12 12 12 22
1 |3 ™ 21.33 §.597 29532 3000 0.5 20 30 92 467 -1.33
2] -5.67
2 (1) o~ 30 -5 7IET 4000 0.6 30 40 115285 1]
2] -10

The Optimization Results pane shows the fixed variable settings, the optimal
free variable settings, and the evaluation of objectives and constraints at
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the optimal free variable settings. In this example, the output of the range
constraint at the optimal free variable settings is shown in the Constraintl
column. For each operating point in a run, two values are returned from
the range constraint.

Looking at the first run:

Optimal S value = 21.33°

To calculate the distances returned from the range constraint:

Distance from lower bound: RangeConOut(1) = -21.33°+20° = —1.33°
Distance from upper bound: RangeConOut(2) = 21.33°-30° = -8.67°

These are the values shown in the Constraintl column. Remember that
negative constraint values mean that the constraint is feasible. The same

values appear in the Constraint Summary Table for the selected run, in the
Constraint Value column, as shown in the following figure.

Constraink Sumnmary
Mame Description Constraint alug Left Yalue Right */alue

E Conztraint1 -5 == -5_LowerBound -1.33 -21.33 -20
S == 5_UpperBound -8.67) 21.33 30

The Constraint Value gives a measure of the distance to the constraint
boundary for each constraint output. If the Left Value > Right Value and
greater than the tolerance for any of the constraint outputs, the constraint
value is bold and the row is highlighted yellow. By default this tolerance is
taken from the optimization constraint tolerance. You can control the value
used for this highlighting by selecting View > Edit Constraint Tolerance.
This means that this constraint distance should be checked to see if the
constraint is feasible at that point.



Optimization Output Views

T
=
BA00d | Foofneneee R B LR
L
=
o]
gs | L. R b k]
i O O s S G D S S
== S - O N ) S
a0 A L i 1 1 i 1 i 1 L i L i
- -
0 10 20 30 40 a0 i} 10 20 30 40 50 1} 10 20 30 40 350
5 EXH INT

The Objective Graphs show cross-section plots of the objective function
against each free variable in the problem. The left plot is a plot of the objective
function against S, with EXH and INT at their optimal values, for the second
run. The range constraint for the second operating point (30 < S < 40) can be
seen; within the constraint region is white, and all other regions outside the
constraint are yellow.
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The constraint graphs for a range constraint shows how the Left Value of each
output of a range constraint depends on the free variables in the optimization.
The Left Value is compared with a plot of the Right Value output on the same
axes. This comparison is illustrated for the example problem at the second
run, as shown in the top left graph.

Constraint1(1) is the first Left Value of the range constraint,
RangeConLeft(1), for the first run in the example problem. The top-left
graph shows a blue line, which is a plot of RangeConlLeft(1) against S (the
constrained variable) with all other free variables set to their optimal values.
The red horizontal line denotes the Right Value (RangeConRight(1), i.e., the
upper bound on S) which in this case is -20°. Because this value is an upper
bound, the yellow region above the red line shows where the table gradient
constraint is infeasible. The vertical orange line shows the optimal value of S;
the intersection of this line with the blue line is marked with a blue triangle
on the Constraintl(1) axis—the triangle marks the Left Value (-21.3°) at
the optimal settings. These are the Left and Right values in the Constraint
Summary table for Constraint1(1).

Constraint1(2) is the second Left Value of the range constraint,
RangeConLeft(2), for the first run in the example problem. The bottom left
graph shows a blue line plot of RangeConLeft(2) against S with all other free
variables set to their optimal values. The horizontal red line denotes the
Right Value (RangeConRight(2) ) which in this case is 30°. Because this value
is an upper bound, the yellow region above the red line denotes where the
table gradient constraint is infeasible. The vertical orange line shows the
optimal value of S; the intersection of this with the blue line is marked with
a blue triangle on the Constraint1(2) axis—the triangle marks the Left
Value (21.3°) at the optimal settings. These are the Left and Right values in
the Constraint Summary table for Constraint1(2).

In this example, the range constraint does not depend on EXH or INT, so the
constraint graphs against these variables are blank.
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In this section...

“Exporting to a Data Set” on page 6-91
“Filling Tables from Optimization Results” on page 6-93

“Custom Fill Function Structure” on page 6-96

Exporting to a Data Set

You can export the optimization output results to new data sets or existing
data sets.

Note In a single objective optimization there is only one solution for each
operating point, so this is exported. Use the Accept check boxes to choose a
subset of results for export. See “Using Acceptable Solutions” on page 6-65.

Multiobjective optimizations produce more than one solution per point, so you
must first select your preferred solutions before you can export to a data set.
See “Selected Solution Slice” on page 6-78.

To export to a data set:

1 Select Solution > Export to Data Set or use the toolbar button. The
Export to Data Set dialog box appears.
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) bxport ToDataser _iix

Select target data set:

7 Mewy:
'\lew_Dataset
+ Modify existing:
Matne Fows [ Columns
Optirn_fmincon 43| 5, ECP, ICP, M, L
B Optitn_patternzearch 43| S, ECP, ICP, M, L
Action: I.ﬂ-.ppend j

[+ U=e acceptable =olutions only

Ok | Cancel |

2 If exporting to a New data set (the default), you can edit the name in the
edit box.

3 If you want to overwrite or add to an existing data set:
a Select the option button Modify existing.
b Select the desired data set in the list.
¢ Choose from Action list:
® Append adds the data to the chosen data set

® Overwrite replaces all data in the data set with the new data

4 By default, the check box Use acceptable solutions only is selected.
Optimization results with selected Accept check boxes will be exported.
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Clear the Use acceptable solutions only check box if you want to export
all the optimization results. See “Using Acceptable Solutions” on page 6-65.

5 Click OK and the data is exported to the data set.
Export Rules
All fixed and free variables are exported where possible.

No models are exported to the data set. If you want to evaluate a model at the
variable values, add the model to the data set in the Data Sets view.

When appending, the rules are the same as when merging data sets:
® Columns of inputs are appended to columns with names that match in

the data set you are appending to.

® Qutputs (models) and any other columns without matching names are
not appended.

® The values for any unmatched columns in the data set are set to the set
point if possible, or zero otherwise.

Filling Tables from Optimization Results
There are two methods for filling tables with optimization results.

e “Table Filling From Optimization Results Wizard” on page 6-93
¢ “Filling Tables Via Data Sets” on page 6-95

Table Filling From Optimization Results Wizard

In the Optimization output view, you can use the Table Filling wizard as
follows.

1 At the Optimization_ Output node, select Solution > Fill Tables, or click
the toolbar button E:m.

The Table Filling wizard appears.
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2 Select the tables to fill, and click the button to add them to the list of tables

to be filled. Click Next.

Note Fill settings are remembered between optimization runs and saved

with the CAGE project.

3 Select a table to be filled, then select the correct variable or model output
from the list of optimization results, and click the button to match them, as
shown in this example. You can also double-click in the results column to
match to the currently selected table. Repeat for other tables.

) Table Filling from Optimization Results Wizard

=10l
Optimal Result Selection
Chooze the optimization results that you wish to il each table with
Fill Method: [Extrapolate Fil =
¥ Use acceptable solutions anly [V £dd to extrapolation mask
Tahles to be filled: Optimization results:
CAGE Takle Output Caolumn Statusz Optimization Results
P = =
B INTCAM X INT X ExH
A ExHCAM x EXH X INT
XN
X L
dhETa
<\ EXTEMP
<\ RESIDFRAC
o\ WET
= Back | et = | Finizh |

In a single objective optimization there is only one solution for each
operating point. In a multiobjective optimization there is more than one
solution per point, so you must first select the preferred solutions before
you can use the Table Filling wizard. To collect your preferred solutions
you must use the “Selected Solution Slice” on page 6-78, then you can use

this wizard to fill tables with the selected solutions.
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4 Select a Fill Method.

® Extrapolate Fill — Uses the optimization results to fill the whole
table by extrapolation.

e Direct Fill — Fills only those table cells whose breakpoints exactly
match the optimization points.

® Custom Fill — You can write your own table filling algorithm and
use the file browser to select it. See “Custom Fill Function Structure”
on page 6-96.

5 Use acceptable solutions only — select this check box to use only
optimization results marked as ’acceptable’. See “Using Acceptable
Solutions” on page 6-65.

6 Add to extrapolation mask— when this check box is selected, filled table
cells are added to the extrapolation mask.

If you use the wizard to repeatedly fill a table any existing extrapolation
mask is added to. As an example, consider filling multiple zones of a table
using results from different optimizations. All zones are cumulatively
added to the mask. If there is overlap with previous fills cells are
overwritten unless they are locked. Note that locked cells are never altered
by table filling.

7 Click Finish to fill the tables.

You will see a dialog box reporting which tables have been successfully
filled. Switch to the Tables view to examine the tables.

Filling Tables Via Data Sets

The other method of filling tables with optimization output uses Data Sets.
This can be useful to see the optimization results and the filled table surface
on the same plot. In Data Sets you can also manually edit the results before
filling, and compare results with external data.

1 From the Optimization Output optimization output node, click Export

,
to Data Set ( i ) in the toolbar (or select Solution > Export to Data
Set). The Export to Data Set dialog box appears. See “Exporting to a Data
Set” on page 6-91 for instructions.
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2 Go to the Data Sets view (click the Data Sets button in the Data Objects
pane) to see that the table of optimization results is contained in the new
data set.

You can now use this data set (or any optimization results) to fill tables, as
you can with any data set.

3 Select the data set and click M (F1ill Table From Data Set) in the toolbar.
4 Clear the check box to Show table history after fill.

5 Choose to fill a table with the desired optimization output by selecting
them in the two lists, then click the button Fill Table at the bottom right.

6 Right-click the display and select Surface to see the filled table surface
and the optimization output values.

See also

e “Tutorial: Filling Tables from Data” in the Getting Started documentation
for more details on using data sets to fill tables.

Custom Fill Function Structure

It can be useful to create your own function to fill tables from the results of an
optimization, for example to implement alternative fill methods, smoothing
strategies, or to customize output.

The input/output structure of a custom fill function resembles that of the
MATLAB® interpolation routines INTERP1 and INTERP2. To see the
structure of the function it is best to look at an example:

1 Locate and open the file griddataTableFill.m in the mbctraining
directory.

2 Type the following at the command line to open the example:

edit griddataTableFill

There are instructions for using this example in the optimization tutorial,
“Using a Custom Fill Routine to Fill Tables”, in the Getting Started
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documentation. This function is an example of a function that will fill 2-D
tables from optimization results.

All 2-D custom fill functions must take the following six inputs, which will be
supplied to it by CAGE when the function is called:

Input Description

col Column coordinate of optimization results
(NF-by-1)

row Row coordinate of optimization results
(NF-by-1)

filldata Optimized results at (row, col) points
(NF-by-1)

colaxis Column breakpoints of table to be filled
(1-by-NCOL)

rowaxis Row breakpoints of table to be filled
(NROW-by-1)

currtabdata Existing table values of table to be filled

(NROW- by -NCOL )

The function must pass three output arguments back to CAGE, to allow
CAGE to fill the table:

Output Description

ok Boolean flag to indicate success of the table
fill (TRUE or FALSE)

tabval New table values of table to be filled
(NROW-by-NCOL)

fillmask Logical matrix to indicate cells to be added

to the extrapolation mask as a consequence
of the table being filled (NROW-by-NCOL)

In the above specifications:
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® NF is the number of points from the optimization results that will be used
to fill your tables

® NCOL is the number of column breakpoints in the table

® NROW is the number of row breakpoints in the table

Note that your function should handle the cases when the table fill is
successful or not. In griddataTableFill, this is handled using the try-catch
construct around the call to griddata. If griddata should fail, then the ok
flag is set to false and the function returns.

Custom Fill Function for 1-D Tables

You can also write custom fill functions to fill 1-D tables. In this case the
input and output specifications are as follows:

Input Description

row Row coordinate of optimization results (NF-by-1)
filldata Optimized results at (row, col) points (NF-by-1)
rowaxis Row breakpoints of table to be filled (NROW-by-1)

currtabdata Existing table values of table to be filled (NROW-by-1)

Output Description

ok Boolean flag to indicate success of the table fill (TRUE or
FALSE)

tabval New table values of table to be filled (NROW-by-1)

fillmask Logical matrix to indicate cells to be added to the

extrapolation mask as a consequence of the table being
filled (NROW-by-1)
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Analyzing Point-by-Point Optimization Output

In this section...

“Process for Analyzing Optimization Results” on page 6-99
“Detecting Local Optima” on page 6-102

“Investigating Early Termination of Optimization” on page 6-106

“Handling Flat Optima” on page 6-111

Process for Analyzing Optimization Results

This topic describes a process for analyzing the results from single-objective
optimizations (e.g., maximizing torque vs. spark, ICP, ECP at an engine
operating point, using foptcon, ga and patternsearch algorithms).

For each run of an optimization, the aim is to find the optimal solution. The
Optimization Output View provides graphical tools to help you determine
whether an optimal solution has been found for a given run. This view
provides a table with icons that indicate the status of each optimization run.

Optimization Results Table Icons

Icon Description

Green square Accept icon Indicates success (algorithm exit flag

o~ >0).
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Optimization Results Table Icons (Continued)

Icon Description
Orange triangle Accept icon Indicates the optimization
terminated early (exit flag = 0

). This situation typically occurs
when the optimizer has reached
some form of time limit. Examples
of this include exceeding a number
of iterations or function evaluation
limit. In such cases, the optimization
was in progress but was forced

to terminate before the optimal
solution had been found.

Red circle Accept icon Indicates failure (an exit flag < 0
). Typically this occurs due to the
problem being over constrained for
this run.

The process for analyzing point-by-point optimization results comprises the
following tasks:

e “Analyzing Output for All Runs” on page 6-100

* “Adjusting Settings To Improve Results” on page 6-101

Analyzing Output for All Runs

1 Switch to the Optimization Output view for the optimization.

2 Analyze all runs with green square Accept icons (MLI). For each run:
a Inspect the Objective Graphs.

b Inspect Objective Contour plots for as many pairs of free variables as
possible. You can configure the optimization output view to display
multiple contour plots simultaneously.

Has the solution found a local optimum? Many optimization algorithms
are designed to locate local optima (e.g., foptcon in CAGE). Check each
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successful run to ensure that the optimizer has found the best solution
possible. See “Detecting Local Optima” on page 6-102 for more information
and examples.

Does the optimization appear to have terminated early? In some cases
an optimization appears to return sub-optimal results even though the
optimizer has returned a positive exit flag. Investigate such cases. See
“Investigating Early Termination of Optimization” on page 6-106.

3 Repeat steps 2a and 2b to analyze all runs with orange triangle Accept
icons (:_&) that indicate the optimization terminated early. See

“Investigating Early Termination of Optimization” on page 6-106 for more
information and examples.

4 Repeat steps 2a and 2b to analyze all runs with red circle Accept icons
(_ r ) that indicate failures. These runs have typically failed to meet
constraints. Inspect the plots and determine if it is acceptable to relax
any of the constraints.

Adjusting Settings To Improve Results

After you investigate your results to identify problems, use these suggestions
to try to improve your optimization results:

1 If you detect local optima, try running the optimization again to locate
the best optimum.

¢ Edit the initial condition manually for this optimization operating point
and rerun.

¢ For point optimizations that use the foptcon algorithm, set the Number
of start points to be greater than 1 and rerun. In this case, CAGE
performs the optimization more than once for each run. To save time,
you might want to only repeat the offending runs in this way.

¢ Use an alternative algorithm on the runs that have found a local
optimum. For example, you could try the ga or patternsearch
algorithms in CAGE (if you tried the foptcon algorithm first).

2 If the optimization terminates early:
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® In cases where the optimizer runs out of iterations/function
evaluations/time and the solution returned is feasible, determine
whether the solution is acceptable to you.

- To accept the solution, select the Accept check box on the Optimization
Results table.

- If you reject the solution, rerun the optimization with modified
parameter settings. In this case, if foptcon or patternsearch is
being used, it is advisable to start the optimizer from the solution
that has just been found.

® In cases where the optimizer runs out of iterations/function
evaluations/time and the solution returned is infeasible, you can try
rerunning the optimization from different initial conditions (for foptcon
or patternsearch ) or different parameter settings (all algorithms). If
this approach does not resolve the problem, determine if any constraint
has been violated. Investigate violated constraints, to determine
whether they can be relaxed. If they can, rerun the optimization with
the relaxed constraints; if not, leave the check box unselected to indicate
the solution is unacceptable.

3 See also “Handling Flat Optima” on page 6-111.

Detecting Local Optima

The following figure shows views for an optimization which has found the
optimal solution. The objective is to maximize Torque (Objectivel) against
spark angle (S), Exhaust valve closing (ECP) and Intake valve opening (ICP).

This result is taken from the Gasoline case study (see “Gasoline Engine
Calibration Case Study” in the Model-Based Calibration Toolbox™ Getting
Started Guide).
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When you analyze the optimization results, look for results that have located
the best optimum against the free variables.

In this case, an individual plot can only show it is highly likely rather than
definitely the optimal value because there are more than two free variables.
For problems with more than two free variables, the Objective Graphs and
Contours views cannot guarantee that an optimal solution has been found
because they provide projections of the model.

For further confirmation, you should inspect the Objective Contour view for as
many pairs of free variables as you have time to analyze.

The following example shows the algorithm has found a local maximum

(marked by the orange cross). You can see the global maximum for this
optimization in the lower-right corner of the contour plot.
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A constraint, such as a table gradient constraint, could cause a local maximum
result. This result could be desirable, however, because it may be preferable
for table smoothness to find a local maximum with a slight loss of torque
compared to the global maximum (in this case, about 1.3 NM of torque (1%)
which is within model accuracy).
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To inspect contour plots for many pairs of free variables, you can configure the
optimization output view to display multiple contour plots simultaneously.
Simultaneous display can help locate those runs that have converged to

a local optimum.

The following figure simultaneously shows contour plots for all pairs of free
variables for the gasoline case study.
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Investigating Early Termination of Optimization

Inspect the Objective Graphs and Contour Views to check for optimizations
that have terminated early. Early termination typically occurs with runs
that have warning orange triangle Accept icons, but can also occur when the
optimizer has returned a successful green square Accept icon.

The following figure shows an optimization run with a warning orange
triangle Accept icon that has been forced to terminate because it exceeded the
iterations limit.

Objectivel

Objectivel

In this case, the optimizer has almost found the optimal solution for this run.
If this optimizer has taken a long time to run, then as this solution is almost
optimal it is probably worth marking as acceptable (select the Accept box in
the Optimization Results table for this run).

The following figure shows another example where an optimization
terminated early because it exceeded the iterations limit.
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In this case, the problem appears to be over constrained because the plots are
entirely shaded yellow. You can check the constraint summary table or the
output table to identify if constraints are met. Also inspect the constraint

summary and constraint graphs.

Note Solutions on the constraint boundary and table gradient constraints
often cause all objective and contour plots to be yellow (see “Table Gradient
Constraint Output” on page 6-121).

The constraint graphs for this case are shown in the following figure.
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These constraint views confirm that Constraint2 is violated for this run.
Therefore, this solution is probably best left as unacceptable. In cases like

this, if it is not already marked as unacceptable, clear the Accept box in the
Optimization Results table for this run.

The following figure shows an optimization that appears to have terminated
early despite returning a positive exit flag. You can see that the optimizer has
not located the maximum. You should investigate cases like this.
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There are many reasons why an optimization appears to terminate early. Two
common causes and possible resolutions are discussed in this section.

Poor algorithm parameter settings

Foptcon may not return a local optimum if the following parameter values
are too high:

e Variable tolerance
¢ Function tolerance

e Constraint tolerance

In this case try reducing the values of these parameters to improve
performance. However, do not reduce these parameter values too low
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(less than ~101%) to avoid internal issues with foptcon. Models that have
nonphysical nonlinearity can also cause failure.

Some nongradient-based algorithms may not return an optimum solution. An
example of this is the genetic algorithm (ga) optimization in CAGE. A poor
choice of parameters for such algorithms can lead to early termination of the
optimization. For example, setting the Crossover Fraction parameter of the
ga algorithm to 1 can lead to a situation where the algorithm prematurely
converges. In this case, try rerunning the optimization at alternative
parameter settings. For best results, rerun the algorithm with a Crossover
Fraction lower than 1 (the default is 0.8).

Using foptcon with noisy models

Optimizations can terminate early because the models are noisy and you used
a gradient based algorithm (foptcon) to solve the optimization problem.

If the contour plots or any results are suspicious you should always investigate
model trends to check if they are sensible and not overfitting. Examine models
in the CAGE Surface Viewer or the Model Browser response surface view. You
may need to remodel.

To check whether your model is noisy, zoom in on a line plot of the model in
the CAGE Surface viewer. Following is a plot of Objectivel against x around
the value of x returned by the optimizer.
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You can see that the model is noisy and the optimizer has (correctly) returned
a local maximum of the model. However, this result is a maximum of the noise
component in the model and not the physical component. If the noise is not
behavior of the physical system, then you should remodel the noisy models in
the Model Browser. The CAGE Import tool can be used to replace the noisy
models with the results of the remodeling and the optimization can be rerun.

Handling Flat Optima

Functions that are flat in the vicinity of their optima can be difficult
to optimize. The following figure shows an example of such a function,

2 2 4
g(X, ¥Y)=(X"+Y +XY)"  and its surface plot.
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This function has a global minimum at (0, 0) and is very flat in the vicinity of
the optimal solution.

Using the foptcon algorithm in CAGE to find the minimum of this function
(from initial conditions of (%,y)=[0.5,0.5] ) produces the result shown in the

following figure. The optimizer finds a solution at (%, y) =[-0.113,-0.113] ,
which is not optimal. In the following plots, you can clearly see that the
optimizer has not located the minimum at (0, 0).
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To adjust the optimizer to find the minimum, you can take one of several
approaches:

¢ Change the initial conditions.

For a gradient-based algorithm (foptcon in CAGE), changing the initial
conditions can help the optimizer locate a minimum where the objective
function is flat in the vicinity of the minimum. In the example shown in
the previous figure, changing the initial conditions to (x,y) = (1,1) leads to
foptcon finding the minimum at (0, 0).

¢ Rescale the objective function.

Rescale the objective function with an operation that does not change the
location of any optimal solutions, e.g., try taking a square root, fourth root
or log, or multiplying by a positive scalar. Check that the position of the
optimum is not changed. When an objective function is flat in the vicinity
of an optimum, rescaling the objective function can help gradient-based
optimization algorithms such as foptcon in CAGE. In the example shown
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in the previous figure, when foptcon in CAGE is used to minimize

12
107 g(x, y) , the minimum at (0, 0) is located.
Use a non-gradient based algorithm.

Try either the pattern search or genetic algorithm options. As these
algorithms do not use gradient information, they can perform better when
used on optimization problems with flat minima. In the example shown
in the previous figure, the pattern search algorithm in CAGE located the
minimum using the default settings.

Run the optimization from several initial condition values.

If you are using foptcon then another possible workaround is to set the
Number of Start Points parameter to be greater than 1. This setting
runs foptcon the specified number of times from different start conditions.
Use this option only for the affected runs as it can be time consuming.

Change tolerances.

For a gradient-based algorithm (foptcon in CAGE), changing the variable
or function tolerances can help the optimizer locate a minimum where the
objective function is flat in the vicinity of the minimum. Reducing the
variable and function tolerances may improve the convergence to the
optimum value in this case.



Interpreting Sum Optimization Output

Interpreting Sum Optimization Output

Some features of the output node are specific to sum optimizations. Using
the Example Problem (see “Example Sum Optimization” on page 6-18) for
reference these features are described in the following sections:

In this section...

“Operating Point Indices” on page 6-115
“Optimization Results Table” on page 6-116
“Objective Graphs” on page 6-117
“Objective Contour Plot ” on page 6-118
“Constraint Graphs ” on page 6-119

“Constraint Summary” on page 6-120

“Table Gradient Constraint Output” on page 6-121

Operating Point Indices

As in the Input Variable Values pane in the Optimization view, in the output
view, the index of the operating point within a run is denoted by the number
in brackets. The following figures provide examples.

Optimization Results

wVector display format: [Sqeliekey || oo variabievalues
1) 151216882691
3 S 17 8225734665
Fun B/ Accept I 5 il 503 155645475751
1 ) dl = 15122 S(4) 225178655652
(2) 17023 S8 27 16361055149
EXHi1) 223472412309
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In the Optimization Results table, the index of the operating point within the
run is shown in brackets. In the Free Variable Values table and graphical
displays, the input variable at the i-th operating point within a run is denoted
by InputVariableName (i), for example, S(4) is the spark value at the 4th
operating point, EXH(1) is the value of exhaust cam phasing at the first
operating point.

Optimization Results Table
Features of the Optimization Results table are labeled in the following figure.

Optimization Cutput Yalues

“ector display format: IExpanded vertically j

=1 ExH INT Ohbjective. .. M L Objectived | Constraint] | Constraint2 | Constraints | Constraint4
Run @ accent|) S || 53| 5= s |IsH | s S| s3] s3]l 25| 23
o & 19122 22347 39162 1 1000 0.3 115.003 -153.321|  -2966e-8) -6635e-3|  -6.302e-3
[2) 17923 15754 44 132 1 1100 0.2 -184 163 -3194e-5] -6741e-3| -6.556e-3
1 13} 15565 2450 4214 1 1250 0.3 -151.5336) -4.808e-11)  -T015e-3|  -6.545e-3
(4] 228168 19457 44 162 1 1300 0.25 -162.575 -0.955)  -TA24e-3]  -6.513e-3
5] 27164 17.21 45.515 1 1625 015 -165.434 9012e-3)  -6923e-3  -7.331e-3
(6] -7 085e-3)  -6.311e-3
(7] -0.015 -0.016
8] -0.015 -0.015
191 -0.015 -0.016
r1tm -0.015 -0.015
A B C D E F G
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Key to Optimization Results Table

® A: The run index — Index into the set of operating points that is being
displayed.

¢ B: The quantity index.

= For fixed and free variables this index corresponds to the index of the
operating point within the run.

= For objectives this corresponds to the index of the output for the specific
labeled objective.
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= For constraints this corresponds to the index of the output for the specific
labeled constraint.

¢ (C: Optimal Free Variable Settings — The optimal settings in this case of S,
EXH and INT at each operating point in the run. For example, the optimal
settings of S, EXH and INT at the third operating point in this run 1 are
$=18.565°, EXH= 24.801°, INT= 41.214°

® D: Fixed Variable Settings — These settings define the operating points for
the run and other fixed variables (such as weights) required for objectives
and constraints. These values were set up before the optimization was run.
For information on the set up of these values, see “Using Variable Values
Length Controls” on page 6-20.

¢ E: Optimal objective outputs — The optimal values of any objective outputs
are displayed here, e.g., the optimized value of the weighted sum of TQ
(115.002 Nm) over the 5 operating points shown in this case.

¢ F,G: Constraint outputs at optimized control parameter settings — The
value of constraint outputs are displayed here. For the example problem,
the model constraint outputs are displayed in the section labeled F. Note
that the number of constraint outputs matches the number of operating
points. The table gradient constraint outputs are displayed in the section
labeled G. The number of values returned by the table gradient constraint
is dependent on the internal settings of that constraint (see information see
“Table Gradient Constraint Output” on page 6-121). For more information
on the number of values returned by objectives and constraints, see
“Algorithm Restrictions” on page 6-23.

Objective Graphs

The objective graphs for sum objective problems show the objective cross
section plots as in the point-by-point case. However, plots are now displayed
against each control parameter at each point in the set of operating points
within each run. In the following figure, the weighted sum of TQ is plotted
against the spark values at the first four operating points in run 1.
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Objective Contour Plot

The objective contour plot for sum objective problems shows the contours

of the objective as in the point-by-point case. However, plots can now be
displayed against any pair of control parameters chosen from all the control
parameters at each point in the set of operating points within each run. In the
following figure, a contour plot of the weighted sum of TQ is plotted against
the value of exhaust valve timing for the third operating point, EXH(3) and
the value of intake valve timing for the third operating point, INT(3).
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Constraint Graphs

The constraint graphs for sum objective problems show the cross section plots
of the left side of the constraints as in the point-by-point case. However, in
the sum case there are several more inputs and outputs that can be plotted.
Specifically, each constraint can return several outputs (see “Algorithm
Restrictions” on page 6-23 for more detail) and these can be displayed against
each control parameter at each point in the set of operating points within
each run.
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In the example problem, the exhaust temperature and residual fraction
constraints have 5 outputs, one for each operating point. In the graphs shown,
one output of the exhaust temperature and residual fraction constraints is
displayed against four free variables. Specifically, the exhaust temperature
model evaluated at the fifth operating point in run 1 (Constraint1(5)) and
the residual fraction model evaluated at the first operating point in run 1
(Constraint2(1)) is plotted against the values of exhaust valve timing at
operating points 4 and 5 (EXH(4) and EXH(5)) plus the values of intake valve
timing at operating points 1 and 2 (INT(1) and INT(2)).

See also “Table Gradient Constraint Output” on page 6-121.

Constraint Summary

The constraint summary for sum optimizations shows a summary of all the
constraint outputs for each constraint at the optimized control parameter
settings for the selected run. The constraint summary table for the Example
problem is shown in the following figure.
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Mame Drescription Constrairt Value Left “alue Right “alue
B4 constrairt1 EXTEMPLS(1, Ni13, Le13, EXHETY, INTE 33 == 1290 -153.521 1136679 1240
EXTEMP(SC2), M(2), L(2), EXH(2), INT(2)) == 1250 -184.163 1105837 1290
EXTEMPCS(S), NE3), LGS, EXHE3), INTES)) == 1290 151 336 1135 664 1290
EXTEMPCS(4), Ni4), L(4), EXH4), INTE4)) == 1290 162578 1127 422 1200
EXTEMPLS(S), NiS), L(S), EXHS), INTES)) == 1230 -165.434 1124 566 1240
lE Congtraint2 RESIDFRACCS(1), M(1), LCT), EXHC), INTE) == 17 -2.966e-5 17 17
RESIDFRAC(S(2), M(2), L(2), EXH(2), INT(2)) == 17 -3.194e-8 17| 17
RESIDFRACCE(3), ME3), Li3), EXHCZ), INTE3)) == 17 4 09811 17 17
RESIDFRAC(S(4), Me4), Lid), EXH(4), INT4)) == 17 -0.855 16.045 17
RESIDFRAC{S(S), M(S), L(S), EXH(S), INT{S)) == 17 9.012e-9 17 17
E Congtraint3 Mgimum rowy gradient of INT over (ML) -6.635e-3 4.3696-3 0.011
Mzzitum column gradient of INT owver (ML) -23.167 31.833 55
E Constrairt4 Mzzitum rowe gradient of EXH over (ML) -6.302e-3 4.698e-3 0.011
Maximum column gradient of EXH over (ML) 1.066e-13 551 53

A summary of the first constraint, EXTEMP <= 1290°C at each operating
point (Constraint1), is shown in the first five rows of the table. In this
case, each of the rows corresponds to an evaluation of the constraint at each
operating point within the run. For example, the second row of Constraint1
details an evaluation of EXTEMP <= 1290°C at the second operating point
in the set of operating points in the run, as indicated in the Description:
EXTEMP(S(2), N(2), EXH(2), INT(2))<= 1290.

The summary for the table gradients (Constraint3 and Constraint4) is
shown. For a detailed explanation of table gradient outputs, see the next
section, “Table Gradient Constraint Output” on page 6-121.

Table Gradient Constraint Output

The table gradient constraint output is best explained using an example
problem.

Control parameters/free variables: SPK, EXH, INT
Fixed variables: N, L

Objective: Maximize Weighted sum of TQ(SPK, EXH, INT, N, L) over the
points shown in the following table (with unit weights at each point):

N L
3000 0.5
3000 0.6
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N L
4000 0.5
4000 0.6

Table Gradient Constraint: Maximum change in EXH is bounded by the
following specifications:

® No more than 5° per 1000rpm change in N

® No more than 4° per 0.1 change in L

® Over the following 2-by-2 table: N breakpoints = [3000 4000]; L. breakpoints
=[0.5 0.6]

In this case, the optimization operating points are the same as the selected
table breakpoints for the table gradient constraint, but these are not
necessarily always the same.

When the optimization has run, the following optimal values of EXH are
returned from the optimizer, as shown in the following tables.

N/L L(1) L(2)
N(1) EXH(1) EXH(2)
N(2) EXH(3) EXH®#4)

The values for all these items are shown in the following table.

N/L 0.5 0.6
3000 2.225 0
4000 -2.775 -5

Table gradient constraints calculate the gradient between the values of
specified free variable at the specified table points specified by the constraint.
In the example problem, the table gradient constraint returns a set of
constraint values as follows.

The table gradient constraint takes the values of EXH from the optimizer, and
then determines the value of EXH at the grid points defined in the table
gradient constraint. In this case, those grid points are the same, so this
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is identical to the preceding table. In cases where the grid points in the
optimization do not match those in the table gradient constraint, a radial
basis function interpolant is used to estimate the constrained variable on
the table gradient grid points.

The table gradient constraint takes the grid of EXH values and calculates row
and column gradients. Row gradients in the direction of increasing N, rg™c,
are calculated on the grid as follows:

rg,¢ = (EXH(3)-EXH(1))/(N(2)-N(1))

= (-2.775-2.225)/1000

=-0.005

rg,¢ = (EXH(4)-EXH(2))/(N(2)-N(1))

= (-5—0)/1000

=-0.005

The table gradient constraint restricts the row and column gradients in each
direction. Row gradients in the direction of decreasing N, rg?, are calculated
on the grid as follows:

rg,% = —rg,™ = 0.005

rg, % = —rg,™ = 0.005

Column gradients in the direction of increasing L, cg™*, are calculated on
the grid as follows:

cg ™ = (EXH(2)-EXH(1))/(L(2)-L(1))
— (0-2.225)/0.1
=-22.25

g, = (EXH(4)-EXH(3))/(L(2)-L(1))
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= (-5—(-2.775))/0.1
=-22.25

Similarly, column gradients in the direction of decreasing N, rg?c, are
calculated on the grid as follows:

cg, % = —cg,™ = 22.25
g, = —cg,™ = 22.25

The table gradient constraint implements the following:

rrg inc | i .
| [5/1000
’"g2d 5/1000
&1 | |5/1000
rg,%¢ . |5/1000
cgme || 4/0.1
chinc 4/0.1
p 4/0.1
cgl ec
| 4/0.1 |
_Cgldecd

This equation can be rewritten as Left Value <= Right Value. In each row the
Left Value must be smaller than the Right Value to meet the constraint.

The Constraint Value numbers returned to the optimizer are calculated as
follows: Constraint Value = Left Value — Right Value.
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rg1||’]C ) . ) . ) ) ) .

| [5/1000] [-0.005] [0.005] [ -0.01
rgZd 5/1000| |-0.005| |0.005| | -0.01
rg;" | |5/1000| | 0.005 | |0.005 0
rg," | |5/1000| | 0.005 | |0.005| | ©
cg™ | | 4701 | |-2225| | 40 | |-62.25
o, | | 4701 | |-2225| | 40 | |-6225

zdec 4701 | | 2225 40 | |-17.75
gy 4701 | | 2225 40 | |-17.75

dec - - N - - - - -
[CO1 ]

These constraint values are shown in the Optimization Results table.
Negative constraint values mean the constraint is feasible, and infeasible
constraints are highlighted yellow. In the following figure, these values
appear in the Constraint4 column. The Optimization Results pane also
shows the fixed variable settings, the optimal free variable settings, and the
evaluation of objectives and constraints at the optimal free settings.

~—
Salution: il 1 ﬂ ‘ Current run: 1 Current solution: 1 | [ W 2ccept
Optimization Results
“ector display format: IExpanded vertically = I
5 EXH INT Objectivel_weights H L Objective1 | Constraintd
Run & Accept I 4Z| I 4Z| I 42' I 42' I 42' I 4Z| I 1Z| I SZI
1 ) |& = 21.066 2225 27.092 1 3000 0.5 422.334 -0.m
(21 20.088 -3.146e-6 11.244 1 3000 0E 1e-2
(3 26113 -2775 9.32 1 4000 05 0
(41 24.026 -5 7.607 1 4000 0.6 -3.146e-3
(5) -62.25
(81 -62.25
(71 1775
(5] -17.75

The constraint graphs for a table gradient constraint show how the Left Value
of each output of a table gradient constraint depends on the free variables

in the optimization. These graphs for the example problem appear in the
following figure.
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Constraint Graphs
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The Left Value is compared with a plot of the Right Value output on the same
axes. This comparison is illustrated for the table gradient example problem.
Consider the top-left graph in the figure shown. Constraint4(1) is the first
Left Value (rg, ) of the table gradient constraint in the example problem.
Recall that this can be written as

rg," = (EXH(3)-EXH(1))/(N(2)-N(1))

The top left graph shows a plot of rg,* against EXH(1) with all other free
variables set to their optimal values, i.e.,

rg, ¢ = (2.775-EXH(1))/1000

which is the blue line shown in the top left graph. The horizontal red line
shows the Right Value (i.e., the upper bound on rg,"). Because this value is
an upper bound on the allowable gradient, the yellow region above the line
shows where the table gradient constraint is infeasible. The vertical orange
line shows the optimal value of the free variable, EXH(1). The blue marker
on the Constraint4(1) axis marks the Left Value (the value of rg,™) at the
intersection of the optimal EXH(1) value and the blue line.



Interpreting Sum Optimization Output

The graph of Constraint4(1) against EXH(2) shows a flat line. The flat line
indicates that there is no dependence of rg, ™ on EXH(2), as it is calculated as
(EXH(3)-EXH(1))/(N(2)-N(1)).

The other constraint graphs can be analyzed in a similar way.

Note If you are using table gradient constraints the solution may appear
infeasible upon inspection of the objective and constraint graphs (the graphs
may appear to be entirely yellow). There are cases when the solution is
actually feasible in this case. This appearance of infeasibility often arises in
sum problems which have tight table gradient constraints. In such cases, you
should check the Solution Information pane and the Constraint Summary
Table to check whether a feasible solution has been found.

A summary of the table gradient constraint output is shown in the Constraint
Summary table, as shown following.

Constraint Summary |

Mame Description Constraint %alue Lett alue Right alue

E Constraintd Macimum rove gradiert of EXH aver (ML) ul Ge-3 Se-3
Maimum column gradient of EXH over (ML) 1775 2225 40

The maximum gradient in the row and column direction (if it is a 2-D table
gradient constraint) is shown in the table. In the example shown, observe the
maximum column gradient of EXH. Recall previously that the cg (column
gradient) values were calculated to be —22.25, —22.25, 22.25 and 22.25. The
maximum column gradient is 22.25, shown in the Left Value column in

the Constraint Summary table. The bound at the maximum value of the
column gradient is 40, shown in the Right Value column in the table. The
Constraint Value column shows the value of Left Value minus Right
Value, which is —17.75, so the constraint has been met.

The Constraint Value gives a measure of the distance to the constraint

boundary for each constraint output. If the Left Value > Right Value and
greater than the tolerance for any of the constraint outputs, the constraint
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value is bold and the row is highlighted yellow. By default this tolerance is
taken from the optimization constraint tolerance. You can control the value
used for this highlighting by selecting View > Edit Constraint Tolerance.
The highlighting indicates that this constraint distance should be checked to
see if the constraint is feasible at that point.
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User-Defined Optimization

In this section...

“Introducing User-Defined Optimization” on page 6-129
“Implementing Your Optimization Algorithm in CAGE” on page 6-130
“About the Worked Example Optimization Algorithm” on page 6-132
“Checking User-Defined Optimizations into CAGE” on page 6-134

Introducing User-Defined Optimization

User-defined optimizations are described in the following sections:

¢ “Implementing Your Optimization Algorithm in CAGE” on page 6-130
describes how to customize the optimization template to use your
optimization routines in CAGE.

¢ There is a step-by-step guide to using the example provided to help you
understand how to modify the template file to use your own optimization
functions. See the optimization tutorial section“Worked Example
Optimization” in the Getting Started documentation.

In many cases the standard routines supplied for constrained single objective
(foptcon, ga, and patternsearch) and multiobjective optimization (NBI)

are sufficient to allow you to solve your optimization problem. Sometimes,
however, you need to write a customized optimization algorithm. This can be
useful in many situations, for example,

¢ For an expert to capture an optimization process to solve a particular
problem, for example, determination of optimal spark angle and exhaust
gas recirculation rate on a port-fuel injection engine

¢ To implement an alternative optimization algorithm to those supplied

¢ To implement a complex constraint or objective that is only possible
through writing M-code

¢ To produce custom output graphics
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User-defined optimization functions in CAGE allow advanced users to write
their own optimization routines that can access current CAGE data. In order
to access the user function from CAGE, you must register the M-file with
CAGE and place it on the MATLAB® path. It is crucial that this function
conforms to the template specified. The following sections describe this
process.

Implementing Your Optimization Algorithm in CAGE

At some point a CAGE optimization function calls on an algorithm to optimize
the objective functions over the free variables. You can implement the
algorithm in the CAGE optimization function as an external M-file. Use

the template file as a basis for your optimization function. The best way to
understand how to alter the template file to implement your own optimization
algorithms is to compare it with the worked example, as described in the
optimization tutorial.

® “About the Worked Example Optimization Algorithm” on page 6-132

examines the coding involved in implementing an external optimizer in a
CAGE optimization M-file

® “Checking User-Defined Optimizations into CAGE” on page 6-134 explains
how to check in your optimization function so you can use it in CAGE

Optimization Function Structure

The optimization function M-files have two sections. To compare these
sections in the worked example with the template file on which it is based:

1 Locate and open the file mbcOStemplate in the mbctraining directory
2 Type the following at the command line to open the example:

edit mbcOSworkedexample
The two sections are the Options section and Evaluate section.

1 The Options function section contains the settings that define your
optimization. Here you can set up these attributes:

* Name
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® Description

® Free variables

Objective functions
® Constraints
¢ Helper data sets

¢ Optimization parameters
CAGE interacts with the cgoptimoptions object, where all these settings
are stored.

See “Methods of cgoptimoptions” on page 6-136 for information about
setting up the options section.

If you leave the cgoptimoptions function unchanged, your optimization
function must be able to support the default options. That is, your
optimization will have:

® One objective

¢ Any number of constraints (selected by the user in CAGE )

The Evaluate function section contains your optimization routine. CAGE
calls this section when the Run button is clicked.

Place your optimization routine under this section, interacting with CAGE
(obtaining inputs and sending outputs) via the cgoptimstore object. Your
optimization must conform to the following syntax:

optimstore = <Your_Optimization> (optimstore)
where <Your_Optimization> is the name of your optimization function.

Any subfunctions called by your optimization routine should also be placed
at the bottom of this section.

See “Methods of cgoptimstore” on page 6-138.
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Note Be careful not to overwrite the worked example and template files
when you are trying them out — save them under a new name when you
make changes.

There is a step-by-step guide describing how to modify the template using
the worked example optimization function in the optimization tutorial. See
“Worked Example Optimization” in the Getting Started documentation.

About the Worked Example Optimization Algorithm

mbcweoptimizer is an example of a user-specified optimization that solves
the following problem:

max TQ over (AFR, SPK).

[bestafr, bestspk] = mbcweoptimizer(TQ) finds a maximum
(bestafr, bestspk) to the function TQ.

TQ must be a function (or a function handle) where the first two input
arguments are AFR and SPK respectively. TQ functions with more
parameters can be used. The extra parameters to these functions can be
specified using anonymous functions. For example if a TQ model has N and
L inputs, you can use the following call to mbcweoptimizer:

[bestafr, bestspk] = mbcweoptimizer(@(afr, spk)TQ(afr, spk, N, L))

[bestafr, bestspk]=mbcweoptimizer(TQ, afrrng, spkrng) finds a
maximum (bestafr,bestspk) to the function TQ.

afrrng and spkrng are 1-by-2 row vectors containing search ranges for
those variables.

[bestafr, bestspk]=mbcweoptimizer(TQ, afrrng, spkrng, res) finds
a maximum (bestafr,bestspk) to the function TQ.

This optimization is performed over a res-by-res grid of (AFR, SPK) values.
If res is not specified, the default grid resolution is 25.
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The Structure of the Worked Example

The best way to understand how to implement an external optimizer in a
CAGE optimization function is to study the details of the example.

¢ To view the whole worked example M-file, at the command line, type

edit mbcOSworkedexample

The following code section is taken from the Evaluate section of the worked
example file as an example.

o

% For every fixed point, find/the optimun (afr, spk)l using

o

¥ the mboweoptimizer ro

[hestafr, hezat=apk] @n_evalTQ, [tindFE, maxiFR],

[min2PE, max3PE], res

hawve written

¥ Zet the bhest wvalues calculated for the free wvariakbhle(s) into the
% data set

optimstore = setFreeVariables (optimstore, [bestafr, bestspk]):

¥ Return some information sbout the optimi=zation
OUTPUT.Algorithm = 'Brute force =search':
OUTPUT.Resolution = res;

¥ Zet all information in the optimstore

optimstore = setExitStatus (optimstore, 1, 'Optimizstion Completed']):
optimstore = setOutput (optimstore, OUTPUT)

The code fragment above is in the i_Evaluate subfunction. This subfunction
is called once for each run of the script. The line of code labeled A above calls
the worked example optimization algorithm external to the optimization
function. As with functions in the Optimization Toolbox™ product, the first
argument to the call to the optimizer is a function handle that evaluates
the objectives at a given input point. We recommend you place the function
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pointed at by the function handle in the optimization file. If you do not place
them in the same file you must make sure the evaluate function M-file is on
the MATLAB path. As an example, the optimization evaluation function in
the worked example optimization is shown in the code fragment following.

Rt et R L -
function ¥ = n evalTQ(afr, spk)

v = evaluate [afr, =pk]):
end

B

The inputs to n_evalTQ are the required inputs for the torque (in this case)
model. To evaluate the objective, the evaluate method from the optimstore
object is used. In the above example, the line of code referenced by B evaluates
the torque model in the worked example at the (afr, spk) input points. The
values of (N, L) at the current run are used in the evaluation of the torque
model. CAGE retrieves these values from optimstore when the torque model
is evaluated.

The two subfunctions presented above are an example of how to implement an
external optimizer in a CAGE optimization M-file.

See also the optimization tutorial section “Creating an Optimization from
Your Own Algorithm” in the Getting Started documentation, which describes
in detail the steps involved in incorporating an example algorithm into a
CAGE optimization M-file.

Checking User-Defined Optimizations into CAGE

When you have modified the template to create your own optimization
function, you must check it into the Model-Based Calibration Toolbox™
product in order to use the function in CAGE. Once you have checked in
your optimization function it appears in the Optimization Wizard. See
“Optimization Wizard” on page 6-9.
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To check a user-defined optimization into CAGE,

1 Select File -> Preferences.

2 Click the Optimization tab and click Add... to browse to your M-file.
Select the file and click Open. This registers the optimization function with
CAGE. You need to do this when you customize your own optimizations.

) CAGE Preferences I ]

File: Lu:u::ationsl Uzer Information  Optimization I

User-defined optimization functions:

Add...
Remove |

Test

4] | 2l
QK I Cancel |

The example shows the worked example function, which is already
registered with CAGE for use in the optimization tutorial.

3 You can click Test to check that the optimization function is correctly
set up. This is a very useful function when you use your own functions;
if anything is incorrectly set up the test results tell you where to start
correcting your function.

You can see an example of this by saving a copy of the worked example file
and changing one of the variable names (such as afr) to a number. Try to

check this altered function into CAGE and the Test button will return an

informative error specifying the line you have altered.

4 Click OK to dismiss the CAGE Preferences dialog box and return to the
CAGE browser.

Registered optimizations appear in the Optimization Wizard when you
set up a new optimization.
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In this section...

“Methods of cgoptimoptions” on page 6-136
“Methods of cgoptimstore” on page 6-138

Methods of cgoptimoptions

You use these functions to set up all your optimization settings in the Options
section of the file. You can set up any or all of these seven attributes:

® Name

® Description

® Free variables

® Objective functions
¢ Constraints

e Helper data sets

¢ Optimization parameters

The following methods are available:

addFreeVariable
addLinearConstraint
addModelConstraint
addObjective
addOperatingPointSet

addParameter

getConstraints

getConstraintsMode

Add free variable to optimization
Add linear constraint to optimization
Add model constraint to optimization
Add objective to optimization

Add operating point set to
optimization

Add parameter to optimization

Return information about all
optimization constraints

Return current usage of constraints
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getDescription

getEnabled

getFreeVariables

getFreeVariablesMode

getLinearConstraints

getModelConstraints

getName

getNonlcon
getObjectives

getObjectivesMode

getOperatingPointSets

getOperatingPointsMode

getParameters

getRunInterfaceVersion

removeConstraint

removeFreeVariable

removeObjective

Get current description for
optimization function

Get current enabled status for
optimization

Return optimization free variable
labels

Return current usage of free
variables

Get linear constraint placeholder
information

Get model constraint placeholder
information

Get current name label for
optimization function

Get nonlinear constraint information

Return information about
optimization objectives

Return current usage of objective
functions

Return information about
optimization operating point
sets

Return current usage of operating
point sets

Return information about
optimization parameters

Get preferred interface to provide
evaluation function

Remove constraint from optimization

Remove free variable from
optimization

Remove objective from optimization
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removeOperatingPointSet
removeParameter
setConstraintsMode
setDescription
setEnabled
setFreeVariablesMode
setName
setObjectivesMode
setOperatingPointsMode

setRunlInterfaceVersion

Methods of cgoptimstore

The following methods are available:

evaluate

evaluateConstraint

evaluateNonlcon

evaluateObjective

get

Remove operating point set from
optimization

Remove parameter from
optimization

Set how optimization constraints are
to be used

Provide description for optimization
function

Set enabled status for optimization
function

Set how optimization free variables
are used

Provide name label for optimization
function

Set how optimization objective
functions are used

Set how optimization operating point
sets are used

Get preferred interface to provide
evaluation function

Evaluate optimization objectives and
constraints

Evaluate optimization constraints

Evaluate optimization nonlinear
constraints

Evaluate optimization objectives

Get optimization properties
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getA

getB

getConstraint
getDataset
getFreeVariables
getInitFreeVal

getLLB
getLcon

getNumConstraint

getNumConstraintLabels
getNumLcon

getNumLconLabels

getNumNonlcon

getNumNonlconLabels

getNumObjectiveLabels
getNumObjectives

getNumRowsInDataset

getObjectives

getObjectiveType
getOptimOptions

Get linear inequality constraint
matrix.

Get linear inequality constraint
target values.

Return constraint labels
Retrieve data from data set
Get optimal values of free variables

Get initial free values for
optimization

Get free variable lower bounds
Return linear constraint labels

Return number of constraints per
label

Return number of constraint labels

Return number of linear constraints
per label

Return number of linear constraint
labels

Return number of nonlinear
constraints per label

Return number of nonlinear
constraint labels

Return number of objective labels

Return number of objectives per
label

Get number of rows in optimization
data set

Return objective labels for
optimization

Return objective type

Retrieve optimization options object
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getOutputInfo

getParam
getStopState
getUB
gridEvaluate

gridPevEvaluate

isScalarFreeVariables

nEvaluate

nEvaluateConstraint

nEvaluateNonlcon

nEvaluateObjective

optimset

pevEvaluate

setExitStatus

setFreeVariables

setOutput

setOutputInfo

setStopState

Get output information for
optimization

Get optimization parameter
Current stop state for optimization
Get free variable upper bounds

Grid evaluation of optimization
objectives and constraints

Grid evaluation of prediction error
variance (PEV)

Return whether all free variables
are scalars

Natural evaluation of optimization
objectives and constraints

Natural evaluation of optimization
constraints

Natural evaluation of optimization
nonlinear constraints

Natural evaluation of optimization
objectives

Create/alter optimization OPTIONS
structure

Evaluate prediction error variance
(PEV)

Set exit status information for
optimization

Set optimal values of free variables

Set diagnostic information for
optimization

Set output information for
optimization

Set current stop state for
optimization
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Purpose

Syntax

Description

See Also

Add free variable to optimization

options = addfreeVariable (options, label)

A method of cgoptimoptions. Adds a placeholder for a free variable to
the optimization. The string label is used to refer to the variable in
CAGE.

setFreeVariablesMode, getFreeVariablesMode, getFreeVariables,
removeFreeVariable
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Purpose

Syntax

Description

Examples

See Also

Add linear constraint to optimization

options = addLinearConstraint(options, label, A, B)

A method of cgoptimoptions. Adds a placeholder for a linear constraint
to the optimization. The string label is used to refer to the constraint
in the CAGE GUI. Linear constraints can be written in the form

A(1)X(1) + A(2)X(2) + ... + A(N)X(n) <= b

where X (1) is the i** free variable, A is a vector of coefficients, and
b is a scalar bound.

% Add SPK and EGR variables to an optimization

opt = addFreeVariable(opt, 'SPK');

opt = addFreeVariable(opt, 'EGR');

% Add a linear constraint such that 3*SPK - 2*EGR <= 30
opt = addLinearConstraint(opt, ‘'newCon', [3 -2], 30);

getLinearConstraints, addModelConstraint, setConstraintsMode,
removeConstraint
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Purpose

Syntax

Description

Examples

See Also
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Add model constraint to optimization

options=addModelConstraint (options, label, boundtype, bound)

A method of cgoptimoptions. Adds a placeholder for a model constraint
to the optimization. The string label is used to refer to the constraint
in CAGE.

boundtype can be set either to the string ’greaterthan' or’lessthan'.
bound must be a scalar real.

If boundtype =’greaterthan’, the model constraint takes the following
form:

CAGE model >= bound

Similarly, if boundtype =’lessthan’, the model constraint takes the
form

CAGE model <= bound

An optimization requires a constraint where a user-defined function
must be less than 500. The following code line adds a placeholder for
this constraint that is labeled 'mycon’:

opt = addModelConstraint(opt, 'mycon', 'lessthan', 500);

getModelConstraints, addLinearConstraint, setConstraintsMode,
removeConstraint
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Purpose

Syntax

Description

Examples

See Also

Add objective to optimization

options = addObjective(options, label, typestr)

A method of cgoptimoptions. Adds a placeholder for an objective
function to the optimization. The string label is used to refer to the
constraint in CAGE.

typestr can take one of four values, 'max’, ’‘min’, ‘'min/max’, or ’helper’.
opt = addObjective(opt, 'newObj', 'max')

Adds an objective function labeled newObj to the optimization and
indicates that it is to be maximized.

opt = addObjective(opt, 'newObj', 'min/max')

Adds an objective function labeled newObj to the optimization and
indicates that the user should be allowed to choose whether it is
minimized or maximized from CAGE.

opt = addObjective(opt, 'newObj2', 'helper')

Adds an objective function labeled newObj2 to the optimization. The
string ’helper’ indicates that the function is used as part of the
determination of the cost function but is not directly minimized or
maximized.

getObjectives, setObjectivesMode, getObjectivesMode,
removeObjective

6-145



addOperatingPointSet

Purpose
Syntax

Description

See Also

6-146

Add operating point set to optimization
options = addOperatingPointSet(options, label, vars)

A method of cgoptimoptions. options =
addOperatingPointSet (options, label, vars) Adds a placeholder
for an additional operating point set to the optimization.

The string label is used to refer to the constraint in CAGE. vars is a
(1-by-N) cell array of strings where N >= 1. Each element of vars is

a label for a CAGE variable that must appear in the operating point

set that the user chooses.

getOperatingPointSets, setOperatingPointsMode,
getOperatingPointsMode, removeOperatingPointSet
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Purpose

Syntax

Description

Add parameter to optimization

options = addParameter(options, Label, Type, Value)
options addParameter(options, Label, Type, Value,
DisplayName)

A method of cgoptimoptions.

options = addParameter(options, Label, Type, Value) adds a
parameter to the optimization. The string Label is used to refer to the
parameter in the Evaluate section of your script. You must specify a
default value in Value. The table below lists the parameter types that
are supported along with how to specify their Type and Value.

Parameter Type Type Value

Real number "number' Real scalar

Integer ‘integer' Integer scalar

Enumerated list {'list', {list One of {list items}
items}}

Boolean 'boolean' true or false

Note: The {list items} cell array for an enumerated list must be a
cell array of strings, one for each list member.

You can restrict a numeric parameter (' number' or 'integer') to a
valid range. To do this, specify a cell array for Type from the following:

Range type Type

Positive {TYPESTR, 'positive'}
Negative {TYPESTR, 'negative'}
User defined {TYPESTR, [a b]}

where TYPESTR is either 'number' or 'integer'. Note that the
user-defined range type strictly includes the limits, whereas the positive
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and negative range types exclude zero. Furthermore, the default Value
must lie in the specified range.

options = addParameter(options, Label, Type, Value,
DisplayName) allows you to add a more descriptive label for the
parameter in the CAGE Optimization Parameters GUI. Note that you
still must refer to the parameter by label in the Evaluate section of
your script.

getParameters, getParam, removeParameter
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Purpose

Syntax

Description

Examples

Evaluate optimization objectives and constraints

Y = evaluate(optimstore, X)

A method of cgoptimstore.
Evaluate optimization objectives and constraints.

Y = evaluate(optimstore, X) evaluates all of the optimization
objectives and constraints at the free variable values X. X is a
(NPoints-by-NFreeVar) matrix where NPoints is the number of points
to be evaluated and NFreeVar is the number of free variables in the
optimization.

Y = evaluate(optimstore, X, itemnames)

evaluates the objectives and constraints specified in the cell array

of strings, itemnames, at the free variable values X. The values of

the objectives and constraints are returned in Y, which is of size
(NPoints-by-NItems) where NItems is the number of objectives and
constraints listed in itemnames. Note that the evaluation of Y is scaled
onto [-1 1].

Y = evaluate(optimstore, X, itemnames, datasetname)

evaluates the specified objectives and constraints at the operating
points in the data set specified by the string datasetname. X must be
a (Nrows-by-NfreeVar) matrix, where Nrows is the number of rows
in the data set.

Y = evaluate(optimstore, X, itemnames, datasetname, rowind)

evaluates the specified objectives and constraints at the points of
datasetname given by rowind. X must be a (NRows-by-NFreevar)
matrix where NRows is the length of ROWIND. ROWIND must be a
list of integer indices in the range [1 NumRowsInDataset]. Yis a
(Nrows-by-NItems) matrix.
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Purpose

Syntax

Description

Examples

See Also

Evaluate optimization constraints

Y = evaluateConstraint(optimstore, X)

A method of cgoptimstore.

Y = evaluateConstraint (optimstore, X) evaluates all of the
optimization constraints at the free variable values X. X must be a
(NPoints-by-NFreeVar) matrix where NPoints is the number of points
to be evaluated and NFreeVar is the number of free variables in the
optimization. The values of the constraints are returned in Y, which is of
size (NPoints-by-NItems) where NItems is the number of constraints
in the optimization. The evaluation of Y is scaled approximately onto
[-1 1]. Negative values of Y imply X is feasible.

Y = evaluateConstraint(optimstore, X, itemnames)

evaluates the constraints specified in the cell array of strings,
itemnames, at the free variable values X. The values of the constraints
are returned in Y, which is of size (NPoints-by-NItems) where NItems
is the number of objectives listed in itemnames.

[Y, YG] = evaluateConstraint(optimstore, X, itemnames)

also evaluates the gradient of the specified constraints in YG (if
itemnames is not specified, then the gradient of all constraints is
returned). YG is of size NFreeVar-by-NItems-by-NPoints, where
NFreeVar is the number of free variables in the optimization.

evaluateObjective, evaluateNonlcon
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evaluateNonlcon

Purpose

Syntax

Description

See Also

6-152

Evaluate optimization nonlinear constraints

[varargout] = evaluateNonlcon(optimstore, X, ItemNames)

Evaluate optimization nonlinear constraints. A method of
cgoptimstore.

Y = evaluateNonlcon(optimstore, X) evaluates all of the nonlinear
constraints in the optimization at the free variable values X. X must be a
(NPoints-by-NFreeVar) matrix where NPoints is the number of points
to be evaluated and NFreeVar is the number of free variables in the
optimization. The evaluation of Y is scaled onto [-1 1].

Y = evaluateNonlcon(optimstore, X, ItemNames) evaluates the
nonlinear constraints specified in the cell array of strings, ItemNames,
at the free variable values X. The values of the nonlinear constraints are
returned in Y, which is of size (NPoints-by-NItems) where NItems is
the number of nonlinear constraints listed in ItemNames.

[Y, YG] = evaluateNonlcon(optimstore, X, ItemNames) also
evaluates the gradient of the specified constraints in YG (if ItemNames is
not specified, then the gradient of all constraints is returned). YG is of
size NFreeVar-by-NItems-by-NPoints, where NFreeVar is the number
of free variables in the optimization.

evaluateObjective



evaluateObjective

Purpose

Syntax

Description

See Also

Evaluate optimization objectives

varargout = evaluateObjective(optimstore, X, ItemNames)

Evaluate optimization objectives. A method of cgoptimstore.

Y = evaluateObjective (optimstore, X) evaluates all of the
optimization objectives at the free variable values X. X must be a
(NPoints-by-NFreeVar) matrix where NPoints is the number of points
to be evaluated and NFreeVar is the number of free variables in the
optimization. The values of the objectives are returned in Y, which is of
size (NPoints-by-NItems) where NItems is the number of objectives in
the optimization. The evaluation of Y is scaled onto [-1 1].

Y = evaluateObjective (optimstore, X, ItemNames) evaluates
the objectives specified in the cell array of strings, ItemNames, at the
free variable values X. The values of the objectives are returned in Y,
which is of size (NPoints-by-NItems) where NItems is the number
of objectives listed in ItemNames.

[Y, YG] = evaluateObjective(optimstore, X, ItemNames) also
evaluates the gradient of the specified objectives in YG (if ItemNames is
not specified, then the gradient of all objectives is returned). YG is of
size NFreeVar-by-NItems-by-NPoints, where NFreeVar is the number
of free variables in the optimization.

evaluateNonlcon
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get

Purpose

Syntax

Description

See Also
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Get optimization properties

V = get(optimstore, 'PropertyName')

Returns the value of the specified property in the optimization. A
method of cgoptimstore.

get(optimstore) displays all property names and a description of each
property for the OPTIMSTORE object.

S = get(optimstore) returns a structure where each field name is
the name of a property of OPTIMSTORE and each field contains the
description of that property.

Note This method is obsolete. Use the GETXXX methods instead.

See also cgoptimstore/GETXXX, for example getA, getB, etc.



getA

Purpose

Syntax

Description

See Also

Get linear inequality constraint matrix.

A = getA(optimstore)

Get the linear inequality constraint matrix. A method of cgoptimstore.

A = getA(optimstore) returns the linear inequality constraint matrix
used in the optimization. Ais a (NLINCON-by-NFreeVar) matrix where
NFreeVar is the number of free variables in the optimization and
NLINCON is the number of linear inequality constraints.

The following code evaluates the linear inequality constraints in the
optimization:

A getA(optimstore);
b getB(optimstore);
out = A*x - b;

where x is a column vector containing the current free variable values.

getB
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getB

Purpose

Syntax

Description

See Also
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Get linear inequality constraint target values.

B = getB(optimstore)

Get the linear inequality constraint target values. A method of
cgoptimstore.

B = getB(optimstore) returns the linear inequality constraint target
values used in the optimization. B is a (NLINCON-by-1) column vector
where NLINCON is the number of linear inequality constraints.

The following code evaluates the linear inequality constraints in the
optimization:

A = getA(optimstore);
b getB(optimstore);
out = A*x - b;

where x is a column vector containing the current free variable values.

getA



getConstraint

Purpose
Syntax

Description

See Also

Return constraint labels
conLabels = getConstraint(optimstore)

Return the constraint labels. A method of cgoptimstore.

conLabels = getConstraint(optimstore) returns the labels for all
the constraint functions in optimization. These labels are the those
found in the CAGE GUI for the optimization constraints.

getNonlcon, getLcon
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getConstraints

Purpose

Syntax

Description

See Also

6-158

Return information about all optimization constraints

coninfo = getConstraints(obj)

Return information about all optimization constraints. A method of
cgoptimoptions.

coninfo = getConstraints(options) returns a structure array

of information regarding the optimization constraint functions.
coninfo(i).label contains the label for the i-th constraint. A string
defining the type of the i-th constraint is stored in coninfo (i) .typestr.
The constraint parameters are stored in coninfo(i).pars.

addModelConstraint, addLinearConstraint



getConstraintsMode

Purpose Return current usage of constraints
Syntax mode = getConstraintsMode(options)
Description Returns a string describing how the optimization makes constraints

available to the user. mode will be one of ‘any' or ‘fixed'.

See Also setConstraintsMode
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getDataset

Purpose

Syntax

Description

Examples

See Also

6-160

Retrieve data from data set

V = getDataset(optimstore, datasetName, inputNames)

Returns required data from a named data set. A method of
cgoptimstore.

PTS = getDataset(optimstore, datasetName) returns all the data
from the specified helper data set. If the data set cannot be found, data
is returned as empty.

PTS = getDataset(optimstore, datasetName, inputNames) returns
data from the specified helper data set. Data is retrieved for the
columns of the data set with names that match those in inputNames. If
the dataset cannot be found, data is returned as empty.

V = getdataset(optimstore, 'myDS', {'speed', 'afr'})

returns a NPTS by 2 matrix, V.

NPTS is the number of rows in the operating point set labeled 'myDS',
V(:, 1) is the data for the variable labeled 'speed', V(:, 2) is the
data for the variable labeled 'afr'.

addOperatingPointSet



getDescription

Purpose Get current description for optimization function
Syntax desc = getDescription(options)
Description A method of cgoptimoptions. Returns the description, desc, of the

user-defined optimization function.

See Also setDescription
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getEnabled

Purpose

Syntax

Description

See Also

6-162

Get current enabled status for optimization

en=getEnabled(options)

A method of cgoptimoptions. Returns whether this user-defined
optimization is available to be run. en is set to true or false. When an
optimization is disabled, the user can still register it with CAGE but is

not allowed to create new optimizations using it.

setEnabled



getFreeVariables

Purpose
Syntax

Description

See Also

Get optimal values of free variables
data = getFreeVariables(obj)

A method of cgoptimstore. Get the optimal values of the free variables.

Results = getFreeVariables(obj) returns the matrix of optimal
values that has been set for the free variables. Results is a NSOL by
NFREEVAR matrix containing many solutions for the optimal values of
the free variables. NSOL is the number of solutions and NFREEVAR is the
number of free variables.

setFreevariables
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getFreeVariables

Purpose

Syntax

Description

See Also

6-164

Return optimization free variable labels

labels=getFreeVariables(options)

A method of cgoptimoptions. Returns the current placeholder labels
for the free variables in the optimization. The labels are returned in a
(1-by-NFreeVar) cell array, labels, where NFreeVar is the number of

free variables that have been added to the optimization.

addFreeVariable, setFreeVariablesMode, getFreeVariablesMode



getFreeVariablesMode

Purpose Return current usage of free variables
Syntax mode= getFreeVariablesMode (options)
Descripl‘ion A method of cgoptimoptions. Returns a string describing how the

optimization makes free variables available to the user. mode is set
to any or fixed.

See Also setFreevariablesMode
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getinitFreeVal

Purpose Get initial free values for optimization

Syntax X0 = getInitFreeval(cos)

Description Get the initial free values for the optimization. A method of
cgoptimstore.

x0 = getInitFreeVal(optimstore) returns the initial values of the
free variables used in the optimization. X0 is a (1-by-NFreeVar) matrix
where NFreeVar is the number of free variables in the optimization.

See Also setFreevariablesMode
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getlB

Purpose Get free variable lower bounds
Syntax LB = getLB(optimstore)
Description Get the free variable lower bounds. A method of cgoptimstore.

LB = getLB(optimstore) returns the free variable lower bounds used
in the optimization. LB is a (1-by-NFreeVar) vector where NFreeVar is
the number of free variables in the optimization.

See Also getUB
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getlcon

Purpose

Syntax

Description

See Also

6-168

Return linear constraint labels

conLabels = getLcon(optimstore)

Return the linear constraint labels. A method of cgoptimstore.

conLabels = getLcon(optimstore) returns the labels for the linear
constraints in the optimization. These labels are those found in the
CAGE GUI for the optimization linear constraints.

getObjectives, getNumNonlcon



getLinearConstraints

Purpose

Syntax

Description

See Also

Get linear constraint placeholder information

out = getLinearConstraints(options)

A method of cgoptimoptions. Returns a structure array of information
regarding the linear constraints in the optimization. The structure has
three fields: label, A, and b. See the help for addLinearConstraint for
more information on these fields.

addLinearConstraint, setConstraintsMode

6-169



getModelConstraints

Purpose
Syntax

Description

See Also
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Get model constraint placeholder information
out = getModelConstraints (options)

A method of cgoptimoptions. Returns a structure array of information
regarding the model constraints in the optimization. The structure
has three fields: label, boundtype, and bound. See the help for
addModelConstraint for more information on these fields.

addModelConstraint, setConstraintsMode



getName

Purpose Get current name label for optimization function
Syntax name=getName (options)
Descripl‘ion A method of cgoptimoptions. Returns the current name label, name,

for the user-defined optimization function.

See Also setName
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getNonlcon

Purpose

Syntax

Description

See Also

6-172

Get nonlinear constraint information

out = getNonlcon(obj)

Get nonlinear constraint information. A method of cgoptimoptions.

out = getNonlinearConstraints(options) returns a structure array
of information regarding the nonlinear constraints in the optimization.
The structure has three fields: label, type and pars. The label

field contains the label used for the constraint in the CAGE GUI. The
typestr field contains constraint type selected by the user. The pars
field contains any parameters associated with the constraint.

getModelConstraints, getLinearConstraints



getNumConstraint

Purpose

Syntax

Description

See Also

Return number of constraints per label

ncon = getNumConstraint (optimstore)
ncon getNumConstraint (optimstore, conLabels)

Return the number of constraints per label. A method of cgoptimstore.

ncon = getNumConstraint(optimstore) returns the number of
constraints that will be returned from an evaluation of each labeled
constraint. For example, consider an optimization that has a sum
constraint over a set of points, S, and a point constraint to be evaluated
at each member of S. NCON will return [1 r], where r is the number of
points in S.

ncon = getNumConstraint(optimstore, conLabels) returns the
number of constraints from an evaluation of the defined constraints.

getNumNonlcon
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getNumConstraintLabels

Purpose
Syntax

Description

See Also
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Return number of constraint labels
out = getNumConstraintLabels(optimstore)

Return the number of constraint labels. A method of cgoptimstore.

out = getNumConstraintLabels(optimstore) returns the number of
constraint labels in the optimization.

getNumObjectivelLabels



getNumLcon

Purpose

Syntax

Description

See Also

Return number of linear constraints per label

ncon = getNumLcon(optimstore)
ncon getNumLcon(optimstore, conlLabels)

Return the number of linear constraints per label. A method of
cgoptimstore.

ncon = getNumLcon(optimstore) returns the number of constraints
that will be returned from an evaluation of each linear constraint.

ncon = getNumNonlcon(optimstore, conLabels) returns the number
of constraints from an evaluation of the defined constraints.

getNumNonlcon, getNumConstraint
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getNumLconLabels

Purpose
Syntax

Description

See Also

6-176

Return number of linear constraint labels
numlab = getNumLconLabels(optimstore)

Return the number of linear constraint labels. A method of
cgoptimstore.

numlab = getNumLconLabels(optimstore) returns the number of
linear constraint labels in the optimization.

getNumConstraintLabels



getNumNonlcon

Purpose

Syntax

Description

See Also

Return number of nonlinear constraints per label

ncon = getNumNonlcon(optimstore)
ncon getNumNonlcon(optimstore, conLabels)

Return the number of nonlinear constraints per label. A method of
cgoptimstore.

ncon = getNumNonlcon(optimstore) returns the number of
constraints that will be returned from an evaluation of each labeled
constraint. For example, consider an optimization that has a sum
constraint over a set of points, S, and a point constraint to be evaluated
at each member of S. NCON will return [1 r], where r is the number of
points in S.

ncon = getNumNonlcon(optimstore, conLabels) returns the number
of constraints type for the defined constraints.

getConstraints, getNumNonlconLabels

6-177



getNumNoniconLabels

Purpose Return number of nonlinear constraint labels
Syntax numlab = getNumNonlconLabels(optimstore)
Description Returns the number of nonlinear constraint labels in the optimization.

A method of cgoptimstore.

See Also getNumObjectivelLabels
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getNumObijectivelabels

Purpose Return number of objective labels

Syntax numlab = getNumObjectivelLabels(optimstore)

Description Returns the number of objective labels in the optimization. A method of
cgoptimstore.

See Also getNumNonlconLabels
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getNumObijectives

Purpose

Syntax

Description

See Also

6-180

Return number of objectives per label

nobj = getNumObjectives(optimstore)
nobj getNumObjectives (optimstore, objlabels)

Return the number of objectives per label. A method of cgoptimstore.

nobj = getNumObjectives(optimstore) returns the number of
objectives that will be returned from an evaluation of each objective
label. For example, consider an optimization that has a sum objective
over a set of points, S, and a point objective to be evaluated at each
member of S. nobj will return [1 r], where r is the number of points in S.

nobj = getNumObjectives(optimstore, objlabels) returns the
number of objectives that will be returned for the defined objective
labels.

getObjectives; getObjectiveType



getNumRowsInDataset

Purpose Get number of rows in optimization data set

Syntax npts = getNumrowsInDataset(optimstore, datasetName)

Description Returns the number of rows in the named data set. A method of
cgoptimstore.
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getObjectives

Purpose

Syntax

Description

See Also

6-182

Return objective labels for optimization
objLabels = getObjectives(optimstore)
A method of cgoptimstore. Returns the labels for the objective

functions in optimization. These labels are those found in the CAGE
GUI for the optimization objectives.

getLcon



getObjectives

Purpose Return information about optimization objectives
Syntax objinfo=getObjectives(options)
Description A method of cgoptimoptions. Returns a structure array of information

regarding the optimization objective functions. objinfo(i).label
contains the label for the i*" objective. A string defining the type
of the i objective (max, min, min/max, or helper) is stored in
objinfo(i).type.

See Also addObjective, setObjectivesMode, getObjectivesMode
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getObjectivesMode

Purpose

Syntax

Description

See Also

6-184

Return current usage of objective functions
mode = getObjectivesMode(options)
A method of cgoptimoptions. Returns a string describing how the

optimization makes objectives available to the user. mode will be one
of ‘multiple’, ‘any’, or ‘fixed"'.

setObjectivesMode



getOperatingPointSets
|

Purpose Return information about optimization operating point sets
Syntax getOperatingPointSets(options)
Description A method of cgoptimoptions. Returns a structure array of information

regarding the optimization operating point sets. The structure has two
fields, 1abel and vars. See the help for addOperatingPointSet for
more information on these fields.

See Also addOperatingPointSet, setOperatingPointsMode,
getOperatingPointsMode
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getOperatingPointsMode

Purpose

Syntax

Description

See Also

6-186

Return current usage of operating point sets

mode=getOperatingPointsMode (options)

A method of cgoptimoptions. Returns a string describing how the
optimization makes operating point sets available to the user. mode will
be one of ‘default', ‘fixed', or ‘any'.

setOperatingPointsMode



getObjectiveType

Purpose

Syntax

Description

See Also

Return objective type

objType = getObjectiveType(optimstore)
objType getObjectiveType(optimstore, objLabels)

Return the objective type. A method of cgoptimstore.

objType = getObjectiveType(optimstore) returns the objective type
of all the objectives in the optimization. A 1-by-NOBJ cell array is
returned, each element being 'min’, ‘max’ or ’helper’.

objType = getObjectiveType(optimstore, objLabels) returns the
objective type for the defined objectives.

getObjectives
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getOptimOptions

Purpose Retrieve optimization options object
Syntax options = getOptimOptions(optimstore)
Description A method of cgoptimstore. Returns the optimization configuration

object. Information about the optimization set up can be retrieved from
this object.
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getOutputinfo

Purpose

Syntax

Description

Get output information for optimization

[exitflag, msg, stats] = getOutputInfo(cos)

Get output information for the optimization. A method of cgoptimstore.

[exitflag, termMsg] = getOutputInfo(optimstore) returns
diagnostic output information from optimstore. exitflag indicates
the success (exitflag > 0) or failure (exitflag <= 0) of the current
optimization run. exitflag may also give some indication why

the optimization terminated. Any termination message set by the
optimization can be retrieved from termMsg.

[exitflag, termMsg, output] = getOutputInfo(optimstore)
returns in addition a structure of algorithm-specific information in
output. For output to be non-empty, the user must create it in their
algorithm. See the worked example and tutorial for more information
on how to create output structures.
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getParam

Purpose

Syntax

Description

See Also

6-190

Get optimization parameter

property_value = getParam(obj, propertyname)

Get optimization parameter. A method of cgoptimstore.

V = getParam(optimstore, 'Parameter_name') returns the value
of the specified parameter in the optimization. These optimization
parameters must be set up in the Options section of the user-defined
script.

addParameter

See the example file mbcOSworkedexample, used in the optimization
tutorial “Worked Example Optimization”.



getParameters

Purpose Return information about optimization parameters
Syntax getParameters(options)
Descripl‘ion A method of cgoptimoptions. Returns a structure array containing

information about the parameters that are defined for the optimization.
Parameter information is returned in a structure with fields label,
typestr, value, and displayname. See the help for addParameter for
more information on these fields.

See Also addParameter, getParam
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getRuninterfaceVersion

Purpose

Syntax

Description

See Also

6-192

Get preferred interface to provide evaluation function

ver = getRunInterfaceVersion(obj)

Get the preferred interface to provide the evaluation function. A method
of cgoptimoptions.

ver = getRunInterfaceVersion(options) returns the Model-Based
Calibration Toolbox™ product Version that is emulated when the
optimization function’s evaluate option is called. If ver is set to 2,
the interface provided by Model-Based Calibration Toolbox Version

2 software is activated. If ver is set to 3, the new interface, which
Model-Based Calibration Toolbox Version 3 software defines, is used.

setRunInterfaceVersion



getStopState

Purpose Current stop state for optimization
Syntax stop= getStopState(opt)
Description A method of cgoptimstore. stop= getStopState(optimstore)

returns the current stop state for the optimization. The stop state could
be set by the Stop button on the Running Optimization progress bar or
via a call to setStopState within a script.

See Also setStopState
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getUB

Purpose Get free variable upper bounds
Syntax UB = getUB(optimstore)
Description A method of cgoptimstore. Returns the free variable upper bounds

used in the optimization. UB is a (1-by-NFreeVar) vector where
NFreeVar is the number of free variables in the optimization.

See Also getLB
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gridEvaluate

Purpose

Syntax

Description

Examples

Grid evaluation of optimization objectives and constraints

Y = gridEvaluate(optimstore, X)

Y = gridEvaluate(optimstore, X, objconname)

Y = gridEvaluate(optimstore, X, objconname, datasetname)

Y = gridEvaluate(optimstore, X, objconname, datasetname, rowind)

A method of cgoptimstore.

Y = gridEvaluate(optimstore, X) evaluates all the objectives and
constraints at the points X for the current run. This call produces
identical results to the equivalent call to cgoptimstore/evaluate.

Y = gridEvaluate(optimstore, X, objconname) evaluates the
objectives/constraints specified in the cell array objconname as
described above.

Y = gridEvaluate(optimstore, X, objconname, datasetname)
evaluates all the objectives and constraints at all combinations of
the points in datasetname with X. The return matrix, Y, is of size
SIZE(X,1)-by- (NOBJ+NCON) -by-NPTS, where NOBJ is the number
of objectives, NCON is the number of constraints and NPTS is the
number of rows in P. Further, Y(I, J, K) is the value of the J-th
objective/constraint at X(I, :) and P(K, :). Yisscaledon [-11].

Objectives : 01, 02
Constraints : C1, C2

Primary data set:

A B
4
1 3

Free variables:
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gridEvaluate

6-196

X1 X2 X3

2 4 8

1 9 3

6 2 7
X

In this case, the following command

Y = gridEvaluate(optimstore, X)

evaluates objectives and constraints at the following points:

A B X1 X2 X3
4 5 2 4 8
4 5 1 9 3
4 5 6 2 7
1 3 2 4 8
1 3 1 9 3
1 3 6 2 7

Y is a 3-by-4-by-2 matrix where

Y(:,1,1) =Valuesof 01 at A=4,B=5
Y(;, 2,1) =Valuesof 02 at A=4,B=5
Y(;,3,1)=Valuesof Clat A=4,B=5
Y(:,4,1) =Valuesof C2at A=4,B=5
Y(:,1,2) =Valuesof 01 at A=1,B=3
Y(, 2,2) =Valuesof 02 at A=1,B=3



gridEvaluate

Y(;, 3,2)=Valuesof Clat A=1,B=3
Y(;, 4,2) =Valuesof C2at A=1,B=3
Y = gridEvaluate(optimstore, X, objconname, datasetname, rowind)
evaluates the specified objectives/constraints at the points of
datasetname given by rowind as described above. Y is a 1length(rowind)

by length(objconname) by npts matrix.

See Also evaluate
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gridPevEvaluate

Purpose Grid evaluation of prediction error variance (PEV)

Syntax [y, ysums] = gridpevevaluate(optimstore, X)
Y = gridpevevaluate(optimstore, X, objconname)
Y = gridpevevaluate(optimstore, X, objconname, datasetname)
Y gridpevevaluate(optimstore, X, objconname, datasetname, rowind)

Description Warning

The evaluation of PEV is no longer supported in cgoptimstore
and this method will return PEV values of zero (as detailed
below) if called.

A method of cgoptimstore.

Y = gridpevevaluate(optimstore, X) produces identical results to
the equivalent call to cgoptimstore/pevEvaluate

Y = gridpevevaluate(optimstore, X, objconname) returns PEV
values of zero for the objectives/constraints specified in the cell array
objconname.

Y = gridpevevaluate(optimstore, X, objconname, datasetname)
returns PEV values of zero for the specified objectives/constraints. The
return matrix, Y, is of size SIZE (X, 1) -by- (NOBJCON) -by-NPTS, where
NOBJCON is the number of specified objectives/constraints and NPTS is
the number of rows in P.

Y = gridpevevaluate(optimstore, X, objconname,

datasetname, rowind) returns PEV values of zero for the specified
objectives/constraints. Y is a LENGTH(ROWIND) by LENGTH (OBJCONNAME)
by NPTS matrix.

See Also pevEvaluate
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isScalarFreeVariables

Purpose Return whether all free variables are scalars

Syntax stat = isScalarFreeVariables(optimstore)

Description Return whether all the free variables are scalars. A method of
cgoptimstore.

stat = isScalarFreeVariables(optimstore) returns TRUE if all the
free variables are scalars and FALSE otherwise.
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nEvaluate

Purpose

Syntax

Description

See Also

6-200

Natural evaluation of optimization objectives and constraints

ysums] = nEvaluate(optimstore, x)

nEvaluate(optimstore, x, itemNames)

= nEvaluate(optimstore, x, itemNames, datasetName)

= nEvaluate(optimstore, x, itemNames, datasetName, rowind)

Ly
Y
Y
Y

Natural evaluation of optimization objectives and constraints. A method
of cgoptimstore.

Y = nEvaluate(optimstore, x) evaluates the raw values of all of the
optimization objectives and constraints at the free variable values X.
X1is a (NPoints-by-NFreeVar) matrix where NPoints is the number
of points to be evaluated and NFreeVar is the number of free variables
in the optimization.

Y = nEvaluate(optimstore, x, itemNames) evaluates the raw
values of the objectives and constraints specified in the cell array

of strings, itemNames, at the free variable values X. The values of
the objectives and constraints are returned in Y, which is of size
(NPoints-by-NItems) where NItems is the number of objectives and
constraints listed in itemNames.

Y = nEvaluate(optimstore, x, itemNames, datasetName)
evaluates the specified objectives and constraints at the operating
points in the data set specified by the string datasetName.

Y = nEvaluate(optimstore, x, itemNames, datasetName,

rowind) evaluates the specified objectives and constraints at the points
of datasetName given by rowind. X must be a (NRows-by-NFreeVar)
matrix where NRows is the length of rowind. rowind must be a

list of integer indices in the range [1 NumRowsInDataset]. Yis a
(Nrows-by-NItems) matrix.

evaluate



nEvaluateConstraint

Purpose

Syntax

Description

See Also

Natural evaluation of optimization constraints

Y
Y

nEvaluateConstraint(optimstore, x)
nEvaluateConstraint(optimstore, x, itemNames)

A method of cgoptimstore.

Y = nEvaluateConstraint(optimstore, X) evaluates all of the
optimization constraints at the free variable values x. X must be a
(NPoints-by-NFreeVar) matrix where NPoints is the number of points
to be evaluated and NFreeVar is the number of free variables in the
optimization. The raw values of the constraints are returned in v,
which is of size (NPoints-by-NItems) where NItems is the number of
constraints in the optimization.

Y = nEvaluateConstraint (optimstore, X, itemNames) evaluates
the constraints specified in the cell array of strings, itemNames, at the
free variable values X. The raw values of the constraints are returned in
Y, which is of size (NPoints-by-NItems) where NItems is the number
of constraints listed in itemNames.

evaluateObjective, evaluateNonlcon

6-201



nEvaluateNonlcon

Purpose

Syntax

Description

See Also

6-202

Natural evaluation of optimization nonlinear constraints

nEvaluateNonlcon(optimstore, x)
nEvaluateNonlcon(optimstore, x, itemNames)

<<
I

Natural evaluation of optimization nonlinear constraints. A method of
cgoptimstore.

Y = nEvaluateNonlcon(optimstore, x) evaluates all of the
optimization nonlinear constraints at the free variable values X. X must
be a (NPoints-by-NFreeVar) matrix where NPoints is the number of
points to be evaluated and NFreeVar is the number of free variables in
the optimization. The raw values of the constraints are returned in Y,
which is of size (NPoints-by-NItems) where NItems is the number of
nonlinear constraints in the optimization.

Y = nEvaluateNonlcon(optimstore, x, itemNames) evaluates the
nonlinear constraints specified in the cell array of strings, itemNames,
at the free variable values X. The raw values of the constraints are
returned in Y, which is of size (NPoints-by-NItems) where NItems is
the number of nonlinear constraints listed in itemNames.

evaluateObjective; evaluateNonlcon



nEvaluateObjective

Purpose

Syntax

Description

See Also

Natural evaluation of optimization objectives

nEvaluateObjective(optimstore, Xx)
nEvaluateObjective(optimstore, x, itemNames)

<<
I

Natural evaluation of optimization objectives. A method of
cgoptimstore.

Y = nEvaluateObjective(optimstore, x) evaluates all of the
optimization objectives at the free variable values X. X must be a
(NPoints-by-NFreeVar) matrix where NPoints is the number of
points to be evaluated and NFreeVar is the number of free variables
in the optimization. The raw values of the objectives are returned in
Y, which is of size (NPoints-by-NItems) where NItems is the number
of objectives in the optimization.

Y = nEvaluateObjective(optimstore, x, itemNames) evaluates the
objectives specified in the cell array of strings, itemNames, at the free
variable values X. The raw values of the objectives are returned in Y,
which is of size (NPoints-by-NItems) where NItems is the number

of objectives listed in itemNames.

evaluateObjective; evaluateNonlcon
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Purpose

Syntax

Description

See Also

6-204

Create/alter optimization OPTIONS structure

options = optimset
options = optimset
options = optimset
options = optimset

optimstore)

optimfunction, optimstore)
optimfunction, optimstore)
..., 'parami’',valuei,...)

P

Create/alter optimization OPTIONS structure. A method of
cgoptimstore.

options = optimset(optimstore) creates an optimization options
structure that can be used with Optimization Toolbox™ functions.
with the named parameters altered with the specified values. Any
parameters specified in the optimization that match (by name) those in
the default options structure are copied into options.

options = optimset(oldopts, optimstore) creates a copy of
oldopts and copies matching parameters from the optimization into it.

options = optimset(optimfunction, optimstore) creates an
options structure with all the parameter names and default values
relevant to the optimization function named in optimfunction and
then copies matching parameters from the optimization into it.

options = optimset(..., 'parami',valuetl,...) setsthe additional
named parameters to the specified values.

getParam



pevEvaluate

Purpose

Syntax

Description

See Also

Evaluate prediction error variance (PEV)

Y = pevEvaluate(optimstore, X)

Warning

The evaluation of PEV is no longer supported in cgoptimstore
and this method will return PEV values of zero (as detailed
below) if called.

A method of cgoptimstore.

Y = pevEvaluate(optimstore, X, itemnames)

returns PEV values of zero for objectives/constraints at the free variable
values X. X is a (NPoints-by-NFreeVar) matrix where NPoints is the
number of points to be evaluated and NFreeVar is the number of free
variables in the optimization.

Y = pevevaluate(optimstore, X, objconname, datasetname)

returns PEV values of zero for the objectives/constraints at the
operating points in the data set specified by the string datasetname.

Y = pevevaluate(optimstore, X, objconname, datasetname, rowind)

returns PEV values of zero for the specified objectives/constraints
at the points of datasetname given by rowind. X must be a
(NRows -by-NFreeVar) matrix where NRows is the length of
rowind. rowind must be a list of integer indices in the range [1
NumRowsInDataset].Y is a (Nrows-by-NItems) matrix.

gridPevEvaluate
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removeConstraint

Purpose

Syntax

Description

See Also

6-206

Remove constraint from optimization

obj = removeConstraint(obj, sLabel)

Remove a constraint from the optimization. A method of
cgoptimoptions.

obj = removeConstraint(options, label) removes the placeholder
for the constraint referred to by the string label.

getModelConstraints, getLinearConstraints, addModelConstraint,
addLinearConstraint



removeFreeVariable

Purpose

Syntax

Description

See Also

Remove free variable from optimization

obj = removeFreeVariable(obj, sLabel)

Remove a free variable from the optimization. A method of
cgoptimoptions.

options = removeFreeVariable(options, label) removes the
placeholder for the free variable referred to by the string label.

getFreeVariables, addFreeVariable
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Purpose

Syntax

Description

See Also

6-208

Remove objective from optimization

obj = removeObjective(obj, sLabel)

Remove an objective from the optimization. A method of
cgoptimoptions.

options = removeObjective(options, label) removes the
placeholder for the objective referred to by the string label.

getObjectives, addObjective



removeOperatingPointSet

Purpose

Syntax

Description

See Also

Remove operating point set from optimization

obj = removeOperatingPointSet(obj, sLabel)

Remove an operating point set from the optimization. A method of
cgoptimoptions.

options = removeOperatingPointSet (options, label) removes the
placeholder for the operating point set referred to by the string label.

getOperatingPointSets, addOperatingPointSet
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Purpose

Syntax

Description

See Also

6-210

Remove parameter from optimization

obj = removeParameter(obj, sLabel)

Remove a parameter from the optimization. A method of
cgoptimoptions.

Removes the placeholder for the parameter referred to by the string
label.

getParameters, addParameter



setConstraintsMode

Purpose

Syntax

Description

See Also

Set how optimization constraints are to be used
options=setConstraintsMode (options, modestr)

A method of cgoptimoptions. Sets the mode that governs how the user
can set up constraints for the optimization in CAGE.

When modestr = any, the user can add any number of constraints.

When modestr = fixed, the user can only edit the constraints that are
added by the user-defined optimization function.

getConstraintsMode, addModelConstraint, addLinearConstraint

6-211



setDescription

Purpose Provide description for optimization function
Syntax options=setDescription(options, desc)
Descripl‘ion A method of cgoptimoptions. Sets the description for the optimization

object to be the string desc.

See Also getDescription
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setEnabled

Purpose Set enabled status for optimization function
Syntax options = setEnabled(options, status)
Descripl‘ion A method of cgoptimoptions. Sets the optimization function enabled

status. status must be true or false. When an optimization is disabled,
you can still register it with CAGE but are not allowed to create new
optimizations using it.

See Also getEnabled
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setExitStatus

Purpose

Syntax

Description

See Also

6-214

Set exit status information for optimization

optimstore = setExitStatus(optimstore, exitflag, termmsg)

Set exit status information for the optimization. A method of
cgoptimstore.

optimstore = setExitStatus(optimstore, exitflag, termmsg)
sets termination status information in the optimstore. exitflag is an
integer which determines whether the optimization has terminated
successfully. A value of exitflag > 0 indicates success, and exitflag
<=0 indicates failure. In any event, a termination message can be
passed back to the optimization through termmsg.

See the example file mbcOSworkedexample, used in the optimization
tutorial “Worked Example Optimization”.



setFreeVariables

Purpose
Syntax

Description

See Also

Set optimal values of free variables
OUT = setFreeVariables(optimstore, results)
Sets the optimal values of the free variables, as returned by the

optimization, into the optimstore. A method of cgoptimstore.

results is a npts by nfreevar matrix containing the optimal values of
the free variables. nsol is the number of solutions and nfreevar is the
number of free variables.

Note This function must be called at the end of the optimization for
the optimal values to be stored.

getFreeVariables
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Purpose

Syntax

Description

See Also

6-216

Set how optimization free variables are used

options = setFreeVariablesMode (options, modestr)

A method of cgoptimoptions. Sets the mode that governs how the user
is allowed to set up free variables for the optimization in the CAGE GUI.

When modestr = 'any', the user is allowed to add any number of
free variables.

When modestr = 'fixed', the user is only allowed to use the number of
free variables that are added by the user-defined optimization function.

getFreeVariablesMode, addFreeVariable



setName

Purpose Provide name label for optimization function
Syntax options = setName(options, name)
Descripl‘ion A method of cgoptimoptions. Sets the name label for the optimization

object to be the string name.

See Also getName
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setObjectivesMode

Purpose

Syntax

Description

See Also

6-218

Set how optimization objective functions are used

options = setObjectivesMode (options, modestr)

A method of cgoptimoptions. Sets the mode that governs whether the
user is allowed to set up objectives for the optimization in the CAGE
GUL

When modestr = 'any', the user is allowed to add any number of
objectives.

When modestr = 'fixed', the user is only allowed to edit the objectives
that are added by the user-defined optimization function.

When modestr = 'multiple’, the user is only allowed to run the
optimization if he or she has defined two or more objectives.

getObjectivesMode, addObjective



setOperatingPointsMode

Purpose

Syntax

Description

See Also

Set how optimization operating point sets are used

options = setOperatingPointsMode(options, modestr)

A method of cgoptimoptions. Sets the mode that governs how the user
is allowed to set up operating point sets for the optimization in CAGE.

When modestr = 'any', the user is allowed to add any number of
operating point sets.

When modestr = 'default', the user is allowed to optionally define a
single operating point set to run the optimization over.

When modestr = 'fixed', the number of operating point sets required
can be fixed by the optimization function and the user is not allowed to
add or remove any using the CAGE GUL

getOperatingPointsMode, addOperatingPointSet
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setOutput

Purpose

Syntax

Description

See Also

6-220

Set diagnostic information for optimization

optimstore = setOutput(optimstore, OUTPUT)

Set diagnostic information for the optimization. A method of
cgoptimstore.

optimstore = setOutput(optimstore, OUTPUT) sets diagnostic
information for the optimization in optimstore. Any diagnostic
information is passed to optimstore through the structure, OUTPUT. See
the worked example for an example of creating an OUTPUT structure.

See the example file mbcOSworkedexample, used in the optimization
tutorial “Worked Example Optimization”.



setOutputinfo

Purpose Set output information for optimization
Syntax optimstore = setOutputInfo (optimstore, exitflag, termmsg, output)
Description Sets output information for the optimization in optimstore. A method

of cgoptimstore.
The following information is set:
® exitflag: integer value status flag indicating why the optimization

has terminated. exitflag > 0 implies that the optimization has
terminated successfully.

* termmsg: Message that is displayed at termination of algorithm.
Normally used for error messages.

® output: Structure of algorithm statistics for the optimization.

Note This method is obsolete. Use cgoptimstore/setExitStatus and
cgoptimstore/setOutput instead.

See Also setExitStatus, setOutput
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setRuninterfaceVersion

Purpose

Syntax

Description

See Also

6-222

Get preferred interface to provide evaluation function

obj = setRunInterfaceVersion(obj, ver)

Set the preferred interface to provide the evaluation function. A method
of cgoptimoptions.

Sets the Model-Based Calibration Toolbox product Version that is
emulated when the optimization function’s evaluate option is called.
If ver is set to 2, the interface provided by Model-Based Calibration
Toolbox Version 2 software is activated. If ver is set to 3, the new
interface, which Model-Based Calibration Toolbox Version 3 software
defines, will be used.

The interface version that the current version of the Model-Based
Calibration Toolbox product runs is superior in its capabilities, however
it does contains some backwards incompatibilities with the interface
used in version 2. You can use this function in old Model-Based
Calibration Toolbox optimization files that fail to work with the newer
interface.

getRunInterfaceVersion



setStopState

Purpose Set current stop state for optimization
Syntax setStopState (opt,stop)
Description Set current stop state for optimization. A method of cgoptimstore.

stop = setStopState(optimstore,stop) sets the current stop state
(TRUE or FALSE) for the optimization. Note that this command does not
stop an optimization, the optimization script must do this.

See Also getStopState
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Data Sets

This section includes the following topics:

Data Sets Views (p. 7-2)
Setting Up Data Sets (p. 7-4)

Viewing Data in a Table (p. 7-13)
Plotting Outputs (p. 7-15)

Using Color to Display Information
(p. 7-18)

Linking Factors in a Data Set
(p. 7-23)

Assigning Columns of Data (p. 7-25)

Manipulating Models in Data Set
View (p. 7-26)

Filling Tables from Experimental
Data (p. 7-27)

How to use the Data Sets views.

How to set up data sets by importing
experimental data, importing data
from tables, merging data sets,
specifying factors manually, and
creating a factor from the error
between factors.

How to use the data table view.
How to use the plot view.

How to use color plots and restrict the
color to display factor information.

How to link factors.

How to assign columns of data to
input factors, for example, in order
to compare experimental data with
tables or models.

How to change models from input to
output factors.

How to fill tables from data,
including creating rules.
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Data Sets Views

The Data Set view has these main functions:

Validating calibrations with experimental data

Filling tables by reference to a set of experimental data

Constructing operating point sets for running optimizations

Investigating optimization results and using them to fill tables
For worked examples about data sets, see the Getting Started tutorials.
Data Sets consists of four views. These views display different aspects of

the data set. Each view is accessible from the View menu or by clicking the
appropriate button on the toolbar.

Factor Information —| fi:2

—_——

M {+ i% <— Fill Table from Data Set

View Data Tt Plot Outputs

¢ Factor Information

List of all available project expressions, which can be added to the data set
for display and evaluation.

¢ View Data

Displays the data in a table. Individual entries can be altered. Columns of
data can be assigned to CAGE expressions.

¢ Plot Outputs
Displays models and features evaluated at the data points (of the data set).
¢ Fill Table from Data Set

This mode allows you to fill tables by reference to experimental data.



Data Sets Views

GE Browser - datatsettutl

. .cag =10l =]
File Edit Yiew Data Tools window Help a
D@ E[X|# " [EMk e ek
Proceszes Diata Sets | Diata Set Factors
7 meas_tq data | Factor | Statug | Information
X n @D Input
X load Zh5 Input
X afr @D Input
X =pk % Input
Frmeas Output: Data
[ tgmeas Output; Data

i& Targue: Maodel
¥y Tarque: Strategy

l

TP Output: Feature
TP Output: Feature

&

Project Expressions

1

E wpreszzion | Tupe | Information
x afr " ariable It data zet
X load Y ariable In data zet
X n " ariable It data zet
X zpk Wariable In data zet

S | 2D Tatle

A1z 1D Tahle

/132 1D Table

A TORQUE MEC madsd

¥y Tarque: Model Feature In data zet

i& Targue: Strateqy Feature In data zet

|
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Setting Up Data Sets

In this section...

“How to Set Up Data Sets” on page 7-4

“Importing Experimental Data” on page 7-5

“Importing Data from a Table in Your Session” on page 7-7
“Merging Data Sets” on page 7-8

“Specifying the Factors Manually” on page 7-8

“Creating a Factor from the Error Between Factors” on page 7-12

How to Set Up Data Sets

The Data Sets view displays the strategies, tables, and models, etc., as a list
of factors in the default Data Set Factors view. You can also display the
same factors as columns in a grid, with all factors displayed as columns in

the list, by selecting the View Data toolbar button ( i ). The data set works
over a grid of values, which is not necessarily the same as the normalizers of
any included tables in the data set.

You have to set the input factors and their values to define the grid in the data
set. You can do this in one of these ways:
¢ Import experimental data. See “Importing Experimental Data” on page 7-5.

¢ Import the values from a table in your CAGE session. See “Importing Data
from a Table in Your Session” on page 7-7.

¢ Merge data sets that share the same factors. See “Merging Data Sets”
on page 7-8.

e Specify the factors and their values manually. See “Specifying the Factors
Manually” on page 7-8.

The next sections describe each of these in detail.




Setting Up Data Sets

Importing Experimental Data

You can import experimental data to a data set, either to validate a calibration
or to use it as the basis for a calibration.

You can import data that is stored in the following formats:

® Microsoft Excel spreadsheets
* Comma-separated value files

e MAT-files

Importing from Excel or Comma-Separated Value
When you import data from either a Microsoft Excel spreadsheet or from a

comma-separated value file, you must ensure that the data is organized in
the following manner:

e The first row can either be column headers (text) or entries (numbers).

¢ The second row can be a row of units (text), as for importing into the Model
Browser. CAGE ignores this row.

e All the other row and column entries must be numbers.

Note The Data Editor can create a tailor-made Excel sheet for you to fill
with data and then import. This sheet will be in the format the Model-Based
Calibration Toolbox™ product expects to import data. See “Tailor-Made Excel®
Sheets” in the Model-Based Calibration Toolbox Model Browser User’s Guide.

Importing from MAT-files

When you import from a MAT-file, you must ensure that the file contains
numbers only, that is, a double array.

To import experimental data,

1 Select File -> Import -> Data.



7 Data Sets

2 In the file browser, select the correct file to import. This opens the Loading
Data from MAT - filename dialog. Use this dialog to select the data in the
MAT file you wish to import into the data set. Click OK.

This opens the Data Set Import Wizard.

3 Discard any columns of data you do not want to import by selecting the
column and clicking the button shown.

i
4 Click Next.

The following screen asks you to associate variables in your project with
data columns in the data.

5 Highlight the variable in the Project Assignments column and the
corresponding data column in the Data Column, then click the assign
button, shown.

<

6 Repeat step 5 until you are satisfied that you have associated all the
variables and data columns. Any unassigned data columns are treated
as output factors.
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.} Data Set Import Wizard : _ 1Ol =l
— Match data columng in right ligt to project expressions in left lizt
Mate: Unazsigned columns will be treated az output data
Project Azsighments [Data Columnns
Project | Drata Column Mame | Colurmn
XA X afrmeas 4
xL lpadmeas X loadmeas 3
XM nmeas (-':5 X hmeas 2
FFr 1
. N
X zpkmeas 5
x tgmeaz g
l | B | | 2]
™ Show all expressions
ak. Cancel

Assign button

7 Click Finish to close the dialog box.

This imports your data into the data set. When you have imported your data,
you can view your data set.

Importing Data from a Table in Your Session
To import data from a table,

1 Select Data -> Import -> Import from Table.

If your data set is not empty, a dialog box asks whether you want to Fill
the data set from the table or Overwrite the data set from the table.
Select Fill to use the table values to fill the factors in your data set. Select



7 Data Sets

Overwrite to disregard all factors in your data set and fill the data set
with the input and output factors from the table. A dialog box opens.

2 Select the correct table from your session to import and click OK.

When you have imported your data, you are ready to view the data set.

Merging Data Sets

To merge another data set in your project with the currently selected data set,

1 Select Data -> Import -> Merge Data Set.

The Merge Data Sets dialog box appears containing a list of all data sets
in your project.

2 Select the data set you want to merge with the current data set, and click
OK.

Columns of inputs and external data are appended to columns with names
that match in the current data set.

Outputs (models) and any other columns without matching names are
not merged.

The values for any unmatched columns are set to the set point if possible,
or zero otherwise.

Specifying the Factors Manually

1 Select the Data Set view by clicking the large Data Sets button in the
Data Objects pane.

2 Add a data set to the project by selecting File -> New -> Data Set.
3 Select the factors. (See “Selecting the Factors” on page 7-9.)

4 Build the grid. (See “Manually Setting Values of the Input Variables” on
page 7-11.)
Once you have completed these steps you can view the data set.



Setting Up Data Sets

This section describes

® “Selecting the Factors” on page 7-9
e “Manually Setting Values of the Input Variables” on page 7-11

Selecting the Factors

Clicking the Factors View button in the toolbar ( e
list boxes.

). This displays two

¢ The upper list shows all factors within the data set. You can sort factors by
clicking the column headings.

¢ The lower list shows CAGE project expressions.

7-9
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7-10

— Factors in the current data set

1

\\

To add a factor to a data set,

¢ Right-click a factor and select Add to Data Set from the context menu.

_

You can use this view to add factors to or remove factors from the data set.

Factors in the current data set

Data Sets Diata Set Factors
------ FH data F actor |_Status | |nformation
X n T Input
X load ! 5 Input
X afr T Input
X zpk % [ npLat
F nmeas Cutput; Drata
E tgmeas Qutput: Drata
n.anque: todel TP Output; Feature
h.anque: Strateqy I Output; Feature
ol | 3
Project Expressions |
E sprezszion | Tupe | |nformation
X afr W ariable In data zet
X load W ariable In data zet
X n " ariable In data zet
X zpk " ariable In data zet
1% 71 2D Table
/12 1D Table
/13 1D Table
< TOROUE MBL moded
13. Tarque: Madel Feature I data zet
13. Torque: Shategy Feature In data zet
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¢ Alternatively, select the factor or factors that you want to add to the data
set from the list in the lower Project Expressions pane, then select
Data > Factors > Add to Data Set.

To make multiple selections, use the standard Shift+click or Ctrl+click.
To remove a factor from a data set,

1 Select the factor or factors that you want to remove from the data set.

2 Right-click and select Remove from Data Set, or select the menu item
Data -> Factors -> Remove From Data Set.

Note Links between the two lists are always preserved, so clicking load in
the upper list also selects load in the lower list. In other words, you can
copy or remove from either list and the relevant results appear in both.

Manually Setting Values of the Input Variables

Clicking the Build Grid toolbar button ( b ) or selecting Data -> Build Grid
enables you to set the values of the input variables for the data set.

To build a full factorial grid,

1 Select Data -> Build Grid.
2 Select the factor that you want to define a grid for.
3 Set the grid for the factor.

To set a grid of 5, 10, 15, 20, 25, 30, input the following: 5:5:30, where
the first number is the minimum, the second is the step size, and the last
number is the maximum value.

4 Check the size of the data set in the pane. The current size reported at the
bottom of the dialog is the size if you click Cancel to leave the data set
unchanged. The projected size is created if you click OK. In the following
example, the projected size of 45 you can see is obtained by multiplying the
number of points for each factor with a grid (in this case, 3 * 5 * 3).
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5 Select the next factor that you want to define a grid for.

6 When you have set the grids for all the factors, click OK.

— 1. Highlight the input factor.
) Grid Data Set T - O] x|

Grid ower data get input factors

Factor | Type | Hange -
i_.;-;’_ 4] Grid 996:1002:5004 (5 pointz)

i_.-f_ [oad Gnd 01:0.22:0.54  [3 points]

i: afr Corstant 143 -
i_.-_n;’_ zpk. Gnd -2.1:23:49.9  [3 points) =
i e

Enter range or constant faor thiz variable. Clear |

Colon notation may be uzed to zpecify range [eg 0:5:20 =

0.5.10.15.20] fake fctive |
yw | 0.1:0.22:054

Current size: 44 pointz]. Projected size: 1380 ] | Cancel
i o] ‘

2. Set the range for the factor. \— 3. Check the size of the data set.

Creating a Factor from the Error Between Factors

To create a factor that is the difference between two other factors,

1 Highlight the two factors, using Ctrl+click or Shift+click.

2 Select Create Error from the right-click menu on either column head.

This creates a new factor that is the difference between the two other factors.
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Viewing Data in a Table

Click the View Data button ( i ) in the toolbar or select View -> Data to
display the data in tabular form and a list of the current items in the project.

Note that this view is only enabled if you have a grid of points at which to
evaluate and display the models and variables. This grid is not necessarily
derived from the normalizers of any tables included in the data set. You can
set the grid by importing experimental or table data, or by using the Build

Grid toolbar button ( i ). See “Setting Up Data Sets” on page 7-4.

Inputs to the selected column,
colored cream

{

{

\*

Input that is not an input
to the selected column

!

Selected column

*/
Ban

@D load @D afr @D zpk nmess tomeas Ik Torgue: Model| I Torque: Strateq
1 2235 0.5449 9.5 041 2247 BE.7 71 BEE
2 3591 0.454 132 041 3613 5441 47 163
3 4945 0.651 12 041 4974 737 47 573
4 851 0645 119 57 851 755 9923
5 2234 0.441 133 041 2247 559 51256
13 3591 0.747 109 041 3612 a0 92537
T 4947 0.541 97 041 4973 625 5776
8 851 0622 99 041 854 724 76195
9 1219 0.333 14 041 1224 415 33226
10 1555 0.352 12 041 1567 49.4 40487
11 1896 0.209 107 3.3 1906 2585 3.492
12 2234 0.254 9.3 32 2245 36 23063
13 2574 0.407 134 3 2585 499 49529
14 2914 0.595 115 31 2929 705 g4 65
15 3251 0.7&81 123 31 3265 0.5 117424
16 3589 0.665 135 3 3603 77 87957
17 3930 0.452 119 31 3952 527 45 511
18 4265 0.235 109 3 4293 277 5.253
19 4606 0.194 12 32 4633 M3 -2.085

Columns are color coded by factor type:

¢ Input factors are white.
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7-14

® Qutput factors are gray.

Selecting an output column highlights the input columns associated with it
by turning the header cells cream.

Standard editing facilities are available. Double-click an input cell to edit
the value.

Cut and paste using the desktop clipboard. Cells, columns, and rows can be
copied directly to and from other applications (for example, Excel).

Note You can only edit input values, not output values.
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Plotting Outputs
Use this to plot the outputs of your data sets.

To view a plot,

1 Select View > Plot or click the ke toolbar button.
2 Select an expression from the list to view.

A plot of the selected output factor appears in the top pane.

tymeas v Data set point

0D - - R R S R R, S X 0 Ferw | P
: : - : : : : ..: ..
. * Y : : : *
BOF- - e [ T
ol T :.
] P : * L : ™
E B L. ... P R RO ... * T W
Zoo s o * * g *
anf- .. S
L :
L ] : ]
1 1 | 1 1 | ‘ | |
= 10 13 20 23 30 33 40
Data set point

x-axiz factor: IData =&t poirt - I y-axis factor: IData =&t poirt - I

Output Expressions (Project and Data Set) |

E xpression | Type | |nformation
[ Copy_of_Torque: Model [rata Set
Frmeas Diata Set
S | 2D Table
A1z 10 Table
/132 1D Table Ir data set
ﬂTDHQUE MBC model I data zet
¥y Torque: Model Feature In data et
i& Targue: Strateqy Feature Ih data zet
[ tgmeas [rata Set

| | ol

3 Use the pop-up menus below the plot to change the factors displayed.

7-15



7 Data Sets

To zoom in on an area of interest,

¢ Press both mouse buttons simultaneously and drag a rectangle; double-click
the graph to return to full size.

Plotting Multiple Selections

You can plot a multiple selection by using standard Ctrl+click and
Shift+click operations.

A legend at the top of the screen displays the key to the graph.

Multiple Plot Outputs

#® Toque: Model #  Torque: Stategy

Targue : Model, Targque : Strategy v Data set point

. . L 1)

: £ o 0% 500
£ 100 ™ . ........ L . ' ........ .l - .'.':! ......... .'..
2 : L . @ :
E "o : ..' s 0y @
i 50 il ".". ..... = ..... ..................................
@ T
i ok - - Looeeens 1 NN - .‘I .......... ooy |. ..... Looeeens SR

2 10 13 20 23 30 33 40
Data set point

x-axiz factor: Iq}(_\r" Selection= - I y-axis factor: I<Selecﬂon> - I

Output Expressions (Project and Data Set) |

E xpression | Type | |nformation
[ Copy_of_Torque: Model Data Set
Frmeas Data Set
%71 2D Table
/12 1D Table
/13 1D Tahle Ir data st
A TORGUE MBL model Ir data set
i& Targue: Model Feature Ih data zet
¥y Torgque: Stratege Feature In data zet
[ tgmeas Data Set

| | |

When exactly two items are displayed, further plot options are available:
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® Plot the first item against the second item (X-Y Selection).
® Display the error using one of the following options:

= Error

= Absolute error

= Relative error (%)

= Absolute relative error (%)
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Using Color to Display Information

You can use the plot view to display more information by coloring the plots.

1 Select View > Plot or click £

2 Highlight the correct expression in the Qutput Expressions (Project
and Data Set) pane.

3 Select Color by Value from the right-click menu of the plot.

4 Select from the pop-up menu the variable you want to use to color the plot.
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Browser - datatsettutl.cag

1. Click Plot Outputs.

3. Select Color by Value
from the right-click menu.
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E sprezzion | Type | |nformation -
ERCopy_of_Tomque: Madel [rata Set
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2. Select the expression.

4. Select the correct variable.
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In the following figure, you can see

® A plot of the Sum vs Data Set Point (this is the strategy from a torque
feature calibration).

® The points are colored by load.

¢ For this example it can be seen that, in general, the higher the load, the
higher the value of torque.

Etror (tgmesas - Torgue) v Data set point
i
: : ™ : : : : :
B ool e e g
E- ...... e o - SRR o ey
5 S .
l—I A0 F- s R s L EREEE g Do
¥ : : : 5 : : : :
R O NN U U U NSO ST
=
= : : : : : : : :
=3 . . . . . - - -
E A0k e Peain . S Teais S R e
= : : . : : : : : :
: L : : : : : :
gk [ & [ [P e S
: - . : : : :
! L — T L L L L [ Limit range
5 10 15 20 25 30 35 40
Data set point Color by:
#-awis factor: IDala set vl y-awis factor: IE”.;,; [tqmej Iload j

Restricting the Color

You might be interested in only part of the display; for example, you might
only be interested in points with a low engine speed. The various display
options enable you to color only the points that you are interested in.

To restrict the color,

1 Select the Limit range box, or right-click the plot and select Limit Color
Range.

Three limit markers appear in the color bar. The colors in the color bar are
compressed within the limit markers. This increases the range of colors
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over the range you are interested in (between the limits), making it easier
to see the distribution of points.

2 Adjust the maximum, midpoint, and minimum of the range by dragging
the limit markers on the color bar.

3 Examine the data points and those that are outside the range.
Use the right-click menu to alter the view of the points outside the range:

¢ Select Exclude to remove all points outside the limits from the display.

¢ Select Color Outside Limits to display all points in color, including those
outside the limits. Points outside the limits are still colored, but only dark
red or dark blue, depending on which end of the range they are.

¢ Select No Color Outside Limits to display the points as in the example
shown. Points outside the limits are plotted as empty circles.
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A point outside the range

2. Adjust the range. —
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1. Select the Limit range box.



Linking Factors in a Data Set

Linking Factors in a Data Set

A factor can be linked to another. The factor then takes on the values of that
other factor, overwriting the original values.

For example, you might want to link a variable spark with a model for
maximum brake torque (MBT) to evaluate a torque model.

To link two factors,

1 Select Data -> Links. This opens a dialog box.

2 Select the data set factor that you want to overwrite.
CAGE generates a list of factors that you could possibly link to the selected
factor. (For example, you cannot link to a factor that depends on the

selected factor.)

3 Select the factor that you want to link the selected factor with.

4 Click ﬂ to link the two factors.
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<) Link Data Set =10l x]

— Select factar in left lizt and link in right sk,

[ata Set Factors | Fossible Links
I ame | Linked | M ame | Type |*
XA XA W ariable
1._-_{ afr_spark_mod L.-ﬁ_{ afr_spark_mod Table
xL L/ Fa Table
x N 7 Fx Table
X 5Pk &= zpark_F... h.Fn_Feature Feature
v oxd T = | | Model Model
Xy 7S XL Wariable
Xz o MBT_Model bMadel
€2 x M Wariable
S 13. zpark_Feature: Equation  Feature
13. spark_Feature:; Model Feature [
LQ zpark_table Table
1% Table_NL Table
L& Table_yz Table
n.anque_Feature: J-quation  Feature
PL Termz Fazhraf/bdedal  Fazhoiea j

/.

/ ] | Cancel

2. Select the factor that 4. Click here to L 2. Select the factor that
you want to overwrite. link the factors. you want to link it with.

CAGE then overwrites the data set factor with the link.

To break a link and return to normal evaluation, click ﬂ.

Once all the links have been created or broken as you want, click OK to exit
the dialog.

See also:“Setting Up Data Sets” on page 7-4
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Assigning Columns of Data

To analyze imported data, you need to assign columns of data to input factors
in the CAGE data set.

Data can be imported into a data set from outside CAGE, for example, from
an engine test cell. In many cases, this data contains a set of input points (or
operating points) and the values of important measurable variables at those
points. To compare data like this with models (and/or tables) in a CAGE
data set, you have to assign columns of the data to the corresponding input
factors in the data set.

To assign data,

1 Select Data > Assign.

2 In the dialog box, highlight the column that you want to assign and the
variable that you want to assign it to.

o,
3 Click <« to assign.

To unassign data,

1 Select Data > Assign.

2 In the dialog box, highlight the variable that you want to unassign.

A
3 Click ﬂ to unassign.

Note Assigning data to a CAGE expression overwrites that expression in
the data set. This does not affect the expression in the other parts of the
CAGE project.
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Manipulating Models in Data Set View

A model in a data set can be treated as either an input or an output. This is
particularly useful when a model is used as an input to another model and you
want to view specific values of the input model. For example, linking a model
of MBT Spark to a Spark model allows the evaluation of a TQ model at MBT.
To change a model to an input,

1 Highlight the desired model in either the factor view or the table view.

2 Select Treat as Input from the right-click menu.

To revert a model to an output,

1 Highlight the desired model in either the factor view or the table view.

2 Select Treat as Output from the right-click menu.
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Filling Tables from Experimental Data

In this section...

“How to Fill Tables from Experimental Data” on page 7-27

“Creating Rules” on page 7-30

How to Fill Tables from Experimental Data

Any table in the project whose axes (normalizers) exist as factors in the data
set can be filled from imported experimental data (or any data set, such as
optimization output).

CAGE extrapolates the values of the experimental data over the range of
your table. Then it fills the table by selecting the values of the extrapolation
at your breakpoints.

To fill the table with values based on the experimental data,

1 To view the Table Filler display, click g (Fill Table From Data Set) in the
toolbar; or select View > Table Filler.

You can use this display to specify the table you want to fill and the factor
you want to use to fill it.

2 In the lower pane, select the table from the Table to fill list. This is the
table that you want to fill.

3 Select the experimental data from the Factor to fill table list. This is the
data that you want to use to fill the table.

For example, see the following display.
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your lookuptuble 1.00 e R R U
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Experimentnl dutn 010 & 4= ks i
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(o blue dot) ;
H (table axis})
w-gxis factor: IN d y-axis factor: ||_ d

Filling table Mew_ 20 Table with output factor tgmeas from meas_tg_data

Takle to fill | Factor to fill takle
Table | Inputs Factor | Information -
ig Mew_2D_Table M. L. EFIRPM
] spkmeas
M tgmeas L
-
<] | 3 Kl | 2
Table filling rules (optional) |
Click and drag over D ata Set plat to create rules

[ Show table history after il Fill Table |

The upper pane displays the breakpoints of your table as crosses and the
operating points where there is data as blue dots. Data sets display the
points in the experimental data, not the values at the breakpoints. You can
inspect the spread of the data compared to the breakpoints of your table
before you fill the table.

4 To view the table after it is filled, make sure the Show table history after
fill box at the bottom left is selected. This is selected by default.

5 To fill the table, click Fill Table.
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If the Show table history after fill box is selected, the History dialog
box opens, similar to the one shown.

History for Mew_ZD_Table |
W Ergion | Caomment / Action | Date and Time |
2 Yalues filled from data zet meaz_tg data, factor tlgmeas 16-Mar-2004 13:32:06
1 Iritial comfiguration 16-par-2004 12:15:34 Rezet |
Al
Remaoyve |
Edit...
LM 500 1000 1500 2000 2500 3000 3500
01 12.245 13471 14 637 15.084 14 522 13805 13.044
0.2 23.802 25336 26.94 27322 2549 24 344 23897
03 3514 368587 38912 38.876 36.598 33438 3151
0.4 46.028 48217 51.118 51517 49.49 45317 40169
0.5 56.839 25411 B0.752 52.257 E2.139 E1.779 52486
06 63 694 58387 53545 68367 6A.7588 71.364 68274
0.7 79.019 79.285 758.65 7015 75705 52.919 85571
05 55482 55408 929581 98575 92016 a1.03 93014
04 104147 106255 110.504 114302 112183 107 475 107431
1 121 64 123 967 126 965 128007 128826 127 BAs 127 643
Cloze Help

6 Click Close to close the History dialog box and return you to the Table
Filler display.

7 To view the graph of your table, select Data > Plot > Surface.
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7-30

Table

Filling takle Mew2DTable, from factor tgmeas

120
100
g0
60
40
20

This display shows the table filled with the experimental points overlaid as
purple dots.

Creating Rules
You can ignore points in the data set when you fill your lookup table.

By defining a region to include or exclude such points, you create a rule for
the table filling.

For example, you might want to fill a lookup table that has a range of
operating points that is smaller than the range of the experimental data.

To ignore points in the data set,

1 Select Data > Plot > Data Set. This displays the view of where the
breakpoints lie in relation to the experimental data.

2 To define the region that you want to include, left-click and drag the plot.
For example, see the following display.

This region defines a rule in the Table filling rules pane.



Filling Tables from Experimental Data

Filling table Mews_20_Takle, from factor tgmeas
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3 To fill the table based on an extrapolation over these data points only, click
Fill Table.

The display of the surface now shows the table filled only by reference to the
data points that are included in the range of the table.

You can now review your data set using the options in the View and Plot
panes of Data Sets.

You can add any number of rules to follow when filling tables. For example,
you might be aware that a particular test run included in the chosen area
is not good data. You can click and drag to enclose any chosen point, then
right-click that rule (in the Table filling rules pane) and select Exclude
Points. You can set any number of rules to make sure you fill the table by
using just the points you are interested in.

Right-Click Options

Select Data -> Table Fill to reach the following options:

¢ Enable Rule: Apply the rule to the data.

¢ Disable Rule: Do not apply the rule, but also do not delete it.
¢ Exclude Points: Do not include these points in table filling.

¢ Include Points: Include points in table filling.
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¢ Promote Rule: Change order of rules.

¢ Demote Rule: Change order of rules.

¢ Clear Rule: Delete this rule.

You can use these options to enable an iterative process. You can fine-tune

the selection of data points: try different selections of data to fill your tables,
check the results, then reuse the same rules for the same or different tables.
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Surface Viewer

This section includes the following topics:

The Surface Viewer in CAGE (p. 8-2) Introduction to the Surface Viewer.

Viewing a Model or Strategy (p. 8-3) How to view models or strategies.

Setting Variable Ranges (p. 8-5) How to set ranges for display.
Displaying the Model or Feature This section describes the display
(p. 8-7) options available: surface, contour,

single line, single value, multiline,
movie, or table.

Making Movies (p. 8-14)

Displaying Errors (p. 8-16) How to display errors: predicted
error of the model and the error
between a model and a strategy
(feature error).

Printing and Exporting the Display = How to print and export displays.
(p. 8-18)
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The Surface Viewer in CAGE

The Surface Viewer enables you to view the model or the feature as it varies
over the ranges of its variables. You can automatically step through values of
a variable, to make a movie of the behavior of the feature or model. You can
view the model or feature using a variety of plot types.

Note The Surface Viewer is only available when you are viewing models,
tradeoffs or the feature node of a feature calibration.

Following is an example of the Surface Viewer displays.

=) Surface Yiewer : =10l %]

File Wiew Tools  Window Help
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Viewing a Model or Strategy

Viewing a Model or Strategy

To access the surface viewer, select Tools > Surface Viewer or click @ on
the toolbar.

These are the main steps to view the model or feature using the Surface
Viewer dialog box:

1 The model or feature selected when you open the Surface Viewer is
displayed in the plot. If you have more than one model or feature, select
what to display from the top Items list.

You can multiselect up to 4 items at once using Ctrl+click (the plot view
on the right divides into a maximum of 4 plots). All the settings below the
Items list apply to all plots. If one of the features selected in the Items
list does not contain the appropriate input variables you select to plot,
there will be no plot for that item.

2 Select the ranges for the variables. (See “Setting Variable Ranges” on page
8-5.)

3 Choose the plot type to display. (See “Displaying the Model or Feature” on
page 8-7.). You can view surfaces, contour plots, single and multilines,
movies, tables, and single values.

For example, as you view a feature, you can view either the strategy, the
model associated with that feature, the error between the model and the
strategy, or the prediction error if the model was imported from the Model
Browser. You can also use one of these factors to shade the surface formed
by one of the other factors, and you can select any two factors to display
simultaneously as two surfaces.

* You can make a movie. (See “Making Movies” on page 8-14). This enables
you to view the model or feature as it steps through several values of
a variable. For example, if you want to view a feature calibrated for
maximum brake torque (MBT) as it varies over exhaust gas recycling
(EGR), you can make a movie of the feature.

® You can also print or export the display. (See “Printing and Exporting the
Display” on page 8-18.)
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Models or features in the
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Setting Variable Ranges

The Surface Viewer does not work over continuous ranges, only at discrete
points. You must specify, for the model or feature, the discrete points you
want to include in the display. You can display models or features over a
range of points. To edit the displayed values of a variable, double-click in the
value box for the appropriate variable.

e Variables not being used for the axes plotted have a single value for that
plot; to edit the displayed value for these variables you can type directly
into the edit box after double-clicking.

* For variables specified by the axes drop-down menus, the value box displays
the range over which that variable is plotted and the number of points
plotted across that range. To edit both the range and the number of points,
double-click the value box. The Value Editor opens.

E'E_%\l'alue Editor ff" x|
fir il & number of points
= Uniform vector  |500.0  [6500.0  [31
1 — -

= Freeform vector ID 5700.0 54900.0 6100.0 6300.0 6500.0

0]78 | Cancel |

Here you can indicate the points to include in the display. You can specify

¢ The minimum and maximum values and the number of points across that
range by choosing Uniform Vector and typing in the edit boxes Min,
Max, and Number of points.

¢ Each discrete point at which you want to evaluate the model (or feature),
by choosing Freeform vector, and then typing the required values.

For example, if you want to display the variable x at 0, 1, 7, 30, and 50, enter
the following in the Freeform vector edit box, separated by tabs or spaces:

017 3050

Click OK to apply your changes to the plot.
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When you alter the variables, you can select whether you want the display

to update automatically or not. You can toggle the automatic update on

and off by selecting Tools > Auto-Evaluate. When you want to update the
display, select Tools > Evaluate Now . Both of these options have equivalent
toolbar buttons:

FiE




Displaying the Model or Feature

Displaying the Model or Feature

In this section...

“Using Display Options” on page 8-7
“Surface” on page 8-8

“Contour” on page 8-10

“Line” on page 8-11

“Single Value” on page 8-11
“Multiline” on page 8-12

“Table” on page 8-12

Using Display Options
The Plot Type drop-down menu gives the options on how to display the model
or feature, as shown below.

Plot type: Surface H

Cartaur
Line
Single Value
hLiilie:
Movie

2-0 Takle

,7 1-O Takle

Use the options in this menu to display the model or feature as described in
the following sections.

For information about the Movie option, see “Making Movies” on page 8-14.
When plotting multiple models or features, it can be useful to link axes
rotation or use common Y- or Z- ranges. Use the display options (toolbar

button or View menu).

In any of these views you can select View > Statistics, or click the equivalent
toolbar button. This opens a dialog box with a list of the summary statistics
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(mean, standard deviation, maximum, or minimum) of your currently selected
model, strategy, or error for the current display.

For the plots (not movie, single value or tables) you can use the File menu or
toolbar to print, copy to clipboard or print to figure. You can also export plot

values to CSV file. See “Printing and Exporting the Display” on page 8-18.

You can alter display options for all plots (not value or tables) with the View
menu or toolbar button.

Surface

You can rotate the surface plots by left-clicking and dragging.

If you are using the surface viewer to view a feature, you can choose the
following options to display:

e Model



Displaying the Model or Feature

* Strategy

¢ Prediction Error

® Error (between the model and the strategy)

When viewing models there are no strategy options. You can choose these

options from the drop-down menus for Surface 1 Height, Surface 1
Shading, and Surface 2 Height, as illustrated below.

Data to Plot

Plot type: I Surface - I

Surface 1 Height : IMudeI vI
Surface 1 Shading INnne - I
Surface 2 Height : INl:une = I

[ Mark points outside houndary

You can view any of these options alone as a primary surface (by leaving
the last two options set to None). You can add a second option to shade
the primary surface, for example to color your model surface with the error
between the model and the strategy, to highlight problem areas.

When you choose to shade a primary surface, a color bar appears to the right
of the plot to show you the scale. You can change the maximum and minimum
values of the shading factor by typing in the edit boxes above and below the
color bar. You can see an example like this in “Viewing a Model or Strategy”
on page 8-3.

You can add a second surface to display any two of the options simultaneously,
for example, your model and your strategy.

If you have a boundary model, you can display the boundary by selecting
the check box.

Select the Inputs to plot from the X-axis and Y-axis drop-down lists, and
specify the ranges of inputs in Value controls. See “Setting Variable Ranges”
on page 8-5.
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Note For information on the two different error displays available using the
surface view, see the next section, “Displaying Errors” on page 8-16.
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M
! [ automatically choose contour values  Set Cortour Values |

You can specify where you want contours by clicking Set Contour Values.
Use the check box to return to automatic contour value selection. You can also
control number of contours, filling and labels in the display options (toolbar
or View menu).

You can enable Cursor Mode (use the View menu or toolbar button) and

then click on the plot lines to display the values at a point (plotted with an X).
The values are shown in the status bar.
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Displaying the Model or Feature

2 i i i i i i
1000 2000 35000 4000 5000 6000
il

A line plot - you can display up to three different lines (strategy, model,
prediction error and error between the model and strategy). Use the Line
drop-down lists to select what to plot. You can select the check box to clip to a
boundary if available.

You can enable Cursor Mode (use the View menu or toolbar button) and
then click on the plot lines to display the values at a point (plotted with an X).
The values are shown in the status bar.

Single Value

This displays the value of the model, strategy, prediction error or error at the
point you have specified in the variable value boxes.
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8 Surface Viewer

8-12

Multiline

Select the variables to plot from the X-axis and Line colors drop-down
menus. Control the number of lines by altering the Values. You can use the
check box to clip to a boundary if available.

You can enable Cursor Mode (use the View menu or toolbar button) and
then click on the plot lines to display the values at a point (plotted with an X).
The values are shown in the status bar.

Table

Project/Branch 1/Fn_Feature
Yy 0.000 0.500 1.000
-5.000 35.000 33776 30.403 -
-4.500 30.250 28.026 25.653
-4.000 26.000 24776 21.403
-3.500 22.250 21.026 17.653
-3.000 185.000 17.776 14.403
-2.500 16.250 15.026 11.653
-2.000 14.000 12776 5.403
-1.500 12.250 11.026 7.653
-1.000 11.000 4776 5.403 |
-0.500 10.250 9.026 5.653
0.000 10.000 8776 5.403
0.500 10.250 59.026 5653
1.000 11.000 9776 5.403 =
e o _'I_I



Displaying the Model or Feature

You can select a 2-D or 1-D table to display. Select the check box to mark
cells outside the boundary.

Choose variables to be the axes of your table and set the range and number
of points in the same way as for all the plots. Set single values for any other
variables. For more information, see “Setting Variable Ranges” on page 8-5.

For 2-D tables you can use the Cell values drop-down menu to select whether
to display the model output or the prediction error.

For 1-D tables you can select what to display in columns 1, 2 and 3: Model,
Prediction error, Strategy or Error (strategy model) (for features),
or choose None for 2 and 3 to display only a single column. When viewing
models there are no strategy options.
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8 Surface Viewer

Making Movies

How to make a movie that allows you to see an evaluation over two variables at
successive values of a third variable.

Choose Movie from the Plot Type drop-down menu in the Data to Plot pane.
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The movie option allows you to see an evaluation over two variables at
successive values of a third variable. For example, a model of torque might
have speed (N), load (L), and air/fuel ratio (A) as inputs.

The movie option allows you to view how the torque model behaves over the
ranges of speed and load for successive values of air/fuel ratio.

1 Select three variables from the X-axis, Y-axis, and Time drop-down
menus, to indicate which variable you want to display. You can view the
model surface plotted across the range of two variables, and define the
third variable as "time" to see the model surface change across the third
variable’s range.
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Making Movies

2 Define the variable ranges using the Value boxes for the inputs. See
“Setting Variable Ranges” on page 8-5.

3 Select the check box to mark boundaries if available.
4 Click Play.

5 You can click the buttons at each end of the progress bar under the plot to
step through the movie, or click anywhere along the bar (or click and drag
the blue pointer) to display a particular point in the movie. You can rotate
the plot (including during play).
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8 Surface Viewer

Displaying Errors

8-16

In this section...

“Introducing Error Displays” on page 8-16
“Feature Error Data” on page 8-16

“Prediction Error Data” on page 8-16

Introducing Error Displays

There are two different error displays available in the surface display options
for primary and secondary surfaces and surface shading:

¢ Error between the model and the strategy (See “Feature Error Data” on
page 8-16 following.)

¢ Prediction error of the model (See “Prediction Error Data” on page 8-16.)

Feature Error Data

When you are viewing a feature, this displays the error between the strategy
and the model.

To display the error, select Error (strategy-model) from the drop-down
menu for primary or secondary surface. You can also choose to shade your
primary surface with the error by using the Surface 1 Shading menu.

To view the error statistics, select View > Statistics. This opens a dialog box
with a list of the summary statistics for the error between model or feature.

Prediction Error Data

If the model is imported from the Model Browser, it is possible to display the
prediction error (PE) data.

Prediction Error Variance (PEV) is a very useful way to investigate the
predictive capability of your model. It gives a measure of the precision of a
model’s predictions. PEV can also be examined in the Model Browser, both in
the Prediction Error Variance Viewer and to shade surfaces in the Model
Selection and Model Evaluation views. Here you can examine the PEV



Displaying Errors

of designs and models. When you export the model to CAGE you can see
this data in the Surface Viewer in the Prediction Error option. See the
Model Browser GUI Reference and Technical Documents for details about
the calculation of Prediction Error.

Viewing the Prediction Error

Select Prediction Error from the drop-down display menus for primary or
secondary surfaces. You can also choose Prediction Error to shade your
primary surface. As with all other plots, you can view the statistics for the
Prediction Error displayed by selecting View > Statistics. The mean,
standard deviation, and so on are calculated over the range specified in the
variable value boxes.
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8 Surface Viewer

Printing and Exporting the Display

To print the display, select File -> Print, or you can select Print to Figure.
Selecting File > Copy to Clipboard copies the plot image to the clipboard.
This is useful if you want to place plot images into other applications. These
print options also have equivalent toolbar buttons.

You can also export the display data to a comma-separated variable file.

To export the display, select File > Export to CSV. The currently selected
option is exported. The primary input to the first plot is exported (this is
the top left if you have multiple plots). The output is the values at the grid
of points specified by the current ranges and input values. The inputs for
shading and secondary surfaces are not exported.

Note that you cannot print table plots, but you can click and drag to select

cells and press Ctrl-C to copy the values to the clipboard, or you can export
them to CSV files and then load them into Excel.
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